Zinc chloride has an importance in pharmaceutical and nutraceutical industries for the prevention and treatment of several diseases. The objective of the current study was to investigate the impact of The Trivedi Effect® - Energy of Consciousness Healing Treatment (Biofield Energy Treatment) on physical, structural, and thermal properties of zinc chloride using PXRD, PSD, FT-IR, UV-vis, TGA, and DSC analysis. Zinc chloride was divided into two parts – one part was control, while other part was treated with The Trivedi Effect® remotely by eighteen renowned Biofield Energy Healers and defined as The Trivedi Effect® Treated sample. A significant change of the crystallite size and relative intensities of the PXRD peaks was observed in The Trivedi Effect® treated sample with respect to the control sample. The average crystallite size of the treated sample was significantly increased by 41.22% compared with the control sample. The size of the particles at d10, d50, and d90 was increased by 8.33%, 6.27%, and 1.83%, respectively in the treated sample compared with the control sample. The surface area of the treated sample was decreased by 5.90% compared with the control sample. The FT-IR spectroscopic analysis revealed that Zn-Cl stretching in the control and treated sample were at 511 and 507 cm-1, respectively. The UV-vis analysis exhibited that wavelength of the maximum absorbance of both the control and treated samples were at 196.4 and 196.3 nm, respectively. The TGA analysis exhibited that weight loss of the treated sample was reduced by 13.98% and 2.43% in the 1st and 2nd steps of degradation, respectively. Consequently, the DSC analysis revealed that the maximum thermal decomposition temperature of the treated sample (489.06°C) was significantly increased by 15.75% compared with the control sample (422.50°C). Moreover, a significant increase in the enthalpy of decomposition was noticed in the treated sample (ΔHdecomp = 131.40 J/g) by 137.10% compared with the control sample (ΔHdecomp = 55.42 J/g). The current study anticipated that The Trivedi Effect® Treatment might lead to produce a new polymorphic form of zinc chloride, which could have better powder flowability and thermal stability. The treated sample could be more stable during manufacturing, delivery or storage conditions than the untreated sample. Hence, the treated zinc chloride would be very useful to design better nutraceutical and/or pharmaceutical formulations that might offer better therapeutic response against inflammatory diseases, immunological disorders, aging, stress, cancer, etc.
Published in | American Journal of Applied Chemistry (Volume 5, Issue 1) |
DOI | 10.11648/j.ajac.20170501.12 |
Page(s) | 7-18 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2017. Published by Science Publishing Group |
Consciousness Energy Healing Treatment, Biofield Energy Healers, The Trivedi Effect®, Zinc Chloride, PXRD, Particle Size, Surface Area, TGA, DSC
[1] | Ronconi L, Sadler PJ (2008) Applications of heteronuclear NMR spectroscopy in biological and medicinal inorganic chemistry. Coordn Chem Rev 252: 2239-2277. |
[2] | Berg JM, Shi Y (1996) The galvanization of biology: A growing appreciation for the roles of zinc. Science 271: 1081-1085. |
[3] | Higdon JV, Ho E (2005) In: M. Gielen, E. R. T. Tiekink (Eds.), Metallotherapeutic drugs and metal-based diagnostic agents: The use of metals in medicine, Wiley-VCH, Weinheim, p. 237. |
[4] | Brewer GJ (2001) Zinc acetate for the treatment of Wilson's disease. Expert Opin Pharmacother 2: 1473-1477. |
[5] | Prasad AS (1979) Clinical, biochemical, and pharmacological role of zinc. Ann Rev Pharmacol Toxicol 19: 393-426. |
[6] | Supuran CT (2008) Carbonic anhydrases: Novel therapeutic applications for inhibitors and activators. Nat Rev Drug Dis 7: 168-181. |
[7] | Elmes ME (1975) Letter: Zinc in human medicine. Lancet 2: 549. |
[8] | Mazumder PM, Pattnayak S, Parvani H, Sasmal D, Rathinavelusamy P (2012) Evaluation of immunomodulatory activity of Glycyrhiza glabra L. roots in combination with zing. Asian Pac J Trop Biomed 2: S15-S20. |
[9] | Brynestad J, Yakel HL (1978) Preparation and structure of anhydrous zinc chloride. Inorg Chem 17: 1376-1377. |
[10] | Kasture AV, Wadodkar SG (2008) A text book of pharmaceutical chemistry-1, Nirali Prakashan, 25th Ed., Pune, India. |
[11] | Mahadik KR, Kuchekar BS (2008) Concise inorganic pharmaceutical chemistry, Nirali Prakashan, 25th Ed., Pune, India. |
[12] | McDaniel S, Goldman GD (2002) Consequences of using escharotic agents as primary treatment for nonmelanoma skin cancer. Arch Dermatol 138: 1593-1596. |
[13] | Hu J, Yang Z, Wang J, Yu J, Guo J, Liu S, Qian C, Song L, Wu Y, Cheng J (2016) Zinc chloride transiently maintains mouse embryonic stem cell pluripotency by activating Stat3 signaling. PLoS One 11: e0148994. |
[14] | Fukuyama Y, Kawarai S, Tezuka T, Kawabata A, Maruo T (2016) The palliative efficacy of modified Mohs paste for controlling canine and feline malignant skin wounds. Vet Q 1: 1-7. |
[15] | Yakimovskii AF, Kryzhanovskaya SY (2015) Zinc chloride and zinc acetate injected into the neostriatum produce opposite effect on locomotor behavior of rats. Bull Exp Biol Med 160: 281-282. |
[16] | Stenger VJ (1999) Bioenergetic fields. Sci Rev Alternative Med 3: 16-21. |
[17] | Rogers, M (1989) "Nursing: A Science of Unitary Human Beings." In J. P. Riehl-Sisca (ed.) Conceptual Models for Nursing Practice. 3rd Edn. Norwark: Appleton & Lange. |
[18] | Rosa L, Rosa E, Sarner L, Barrett S (1998) A close look at therapeutic touch. Journal of the American Medical Association 279: 1005-1010. |
[19] | Warber SL, Cornelio D, Straughn, J, Kile G (2004) Biofield energy healing from the inside. J Altern Complement Med 10: 1107-1113. |
[20] | Koithan M (2009) Introducing complementary and alternative therapies. J Nurse Pract 5: 18-20. |
[21] | Trivedi MK, Patil S, Shettigar H, Mondal SC, Jana S (2015) The potential impact of biofield treatment on human brain tumor cells: A time-lapse video microscopy. J Integr Oncol 4: 141. |
[22] | Trivedi MK, Patil S, Shettigar H, Gangwar M, Jana S (2015) An evaluation of biofield treatment on susceptibility pattern of multidrug resistant Stenotrophomonas maltophilia: An emerging global opportunistic pathogen. Clin Microbiol 4: 211. |
[23] | Trivedi MK, Patil S, Shettigar H, Gangwar M, Jana S (2015) An effect of biofield treatment on multidrug-resistant Burkholderia cepacia: A multihost pathogen. J Trop Dis 3: 167. |
[24] | Trivedi MK, Patil S, Shettigar H, Bairwa K, Jana S (2015) Phenotypic and biotypic characterization of Klebsiella oxytoca: An impact of biofield treatment. J Microb Biochem Technol 7: 203-206. |
[25] | Trivedi MK, Branton A, Trivedi D, Nayak G, Mondal SC, Jana S (2015) Antibiogram, biochemical reactions and genotyping characterization of biofield treated Staphylococcus aureus. American Journal of BioScience 3: 212-220. |
[26] | Trivedi MK, Branton A, Trivedi D, Nayak G, Bairwa K, Jana S (2015) Physical, thermal, and spectroscopic characterization of biofield energy treated potato micropropagation medium. American Journal of Bioscience and Bioengineering 3: 106-113. |
[27] | Trivedi MK, Branton A, Trivedi D, Nayak G, Mondal SC, Jana S (2015) Biochemical differentiation and molecular characterization of biofield treated Vibrio parahaemolyticus. American Journal of Clinical and Experimental Medicine 3: 260-267. |
[28] | Trivedi MK, Branton A, Trivedi D, Gangwar M, Jana S (2015) Antimicrobial susceptibility, biochemical characterization and molecular typing of biofield treated Klebsiella pneumoniae. J Health Med Inform 6: 206. |
[29] | Trivedi MK, Tallapragada RM, Branton A, Trivedi D, Nayak G, Latiyal O, Jana S (2015) Analysis of physical, thermal, and structural properties of biofield energy treated molybdenum dioxide. International Journal of Materials Science and Applications 4: 354-359. |
[30] | Trivedi MK, Tallapragada RM, Branton A, Trivedi D, Nayak G, Latiyal O, Jana S (2015) Characterization of atomic and physical properties of biofield energy treated manganese sulfide powder. American Journal of Physics and Applications 3: 215-220. |
[31] | Trivedi MK, Branton A, Trivedi D, Nayak G, Saikia G, Jana S (2015) Physical and structural characterization of biofield treated imidazole derivatives. Nat Prod Chem Res 3: 187. |
[32] | Trivedi MK, Tallapragada RM, Branton A, Trivedi D, Nayak G, Mishra RK, Jana S (2015) Characterization of physical, spectral and thermal properties of biofield treated 1, 2, 4-Triazole. J Mol Pharm Org Process Res 3: 128. |
[33] | Trivedi MK, Tallapragada RM, Branton A, Trivedi D, Nayak G, Mishra RK, Jana S (2015) Biofield treatment: A potential strategy for modification of physical and thermal properties of gluten hydrolysate and ipomoea macroelements. J Nutr Food Sci 5: 414. |
[34] | Trivedi MK, Nayak G, Patil S, Tallapragada RM, Jana S, Mishra RK (2015) Bio-field Treatment: An effective strategy to improve the quality of beef extract and meat infusion powder. J Nutr Food Sci 5: 389. |
[35] | Trivedi MK, Branton A, Trivedi D, Nayak G, Latiyal O, Jana S (2015) Evaluation of biofield treatment on atomic and thermal properties of ethanol. Organic Chem Curr Res 4: 145. |
[36] | Trivedi MK, Branton A, Trivedi D, Nayak G, Singh R, Jana S (2015) Physical, thermal and spectroscopic studies on biofield treated p-dichlorobenzene. Biochem Anal Biochem 4: 204. |
[37] | Trivedi MK, Branton A, Trivedi D, Nayak G, Bairwa K, Jana S (2015) Physicochemical and spectroscopic characterization of biofield energy treated p-anisidine. Pharm Anal Chem Open Access 6: 102. |
[38] | Trivedi MK, Branton A, Trivedi D, Nayak G, Gangwar M, Jana S (2015) Agronomic characteristics, growth analysis, and yield response of biofield treated mustard, cowpea, horse gram, and groundnuts. International Journal of Genetics and Genomics 3: 74-80. |
[39] | Trivedi MK, Branton A, Trivedi D, Nayak G, Gangwar M, Jana S (2015) Analysis of genetic diversity using simple sequence repeat (SSR) markers and growth regulator response in biofield treated cotton (Gossypium hirsutum L.). American Journal of Agriculture and Forestry 3: 216-221. |
[40] | Chereson R (2009) Bioavailability, bioequivalence, and drug selection. In: Makoid CM, Vuchetich PJ, Banakar UV (Eds) Basic pharmacokinetics (1st Edn) Pharmaceutical Press, London. |
[41] | Blagden N, de Matas M, Gavan PT, York P (2007) Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv Drug Deliv Rev 59: 617-630. |
[42] | Trivedi MK, Mohan TRR (2016) Biofield energy signals, energy transmission and neutrinos. American Journal of Modern Physics 5: 172-176. |
[43] | Alexander L, Klug HP (1950) Determination of crystallite size with the X-Ray Spectrometer. J App Phys 21: 137. |
[44] | Langford JI, Wilson AJC (1978) Scherrer after sixty years: A survey and some new results in the determination of crystallite size. J Appl Cryst 11: 102-113. |
[45] | Inoue M, Hirasawa I (2013) The relationship between crystal morphology and XRD peak intensity on CaSO4. 2H2O. J Crystal Growth 380: 169-175. |
[46] | Raza K, Kumar P, Ratan S, Malik R, Arora S (2014) Polymorphism: The phenomenon affecting the performance of drugs. SOJ Pharm Pharm Sci 1: 10. |
[47] | Thiruvengadam E, Vellaisamy G (2014) Polymorphism in pharmaceutical ingredients a review. World Journal of Pharmacy and Pharmaceutical Sciences 3: 621-633. |
[48] | http://www.dissolution.com/ddg/showthread.php?2366-Surface-Area-vs-Particle-Size |
[49] | Mosharrof M, Nystrӧm C (1995) The effect of particle size and shape on the surface specific dissolution rate of microsized practically insoluble drugs. Int J Pharm 122: 35-47. |
[50] | Kale VV, Gadekar S, Ittadwar AM (2011) Particle size enlargement: Making and understanding of the behavior of powder (particle) system. Syst Rev Pharm 2: 79. |
[51] | Stuart BH (2004) Infrared spectroscopy: Fundamentals and applications in Analytical Techniques in the Sciences. John Wiley & Sons Ltd., Chichester, UK. |
[52] | Hesse M, Meier H, Zeeh B (1997) Spectroscopic methods in organic chemistry, Georg Thieme Verlag Stuttgart, New York. |
[53] | Martin FJ, Albers H, Lambeck PV, Van de Velde GMH, Popma ThJA (1991) Luminescent thin films by the chemical aerosol deposition technology (CADT). Aerosol Sci 22: S435-S438. |
[54] | Bajaj S, Singla D, Sakhuja N (2012) Stability testing of pharmaceutical products. J App Pharm Sci 2: 129-138. |
APA Style
Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak, Aileen Carol Lee, et al. (2017). A Comprehensive Analytical Evaluation of the Trivedi Effect® - Energy of Consciousness Healing Treatment on the Physical, Structural, and Thermal Properties of Zinc Chloride. American Journal of Applied Chemistry, 5(1), 7-18. https://doi.org/10.11648/j.ajac.20170501.12
ACS Style
Mahendra Kumar Trivedi; Alice Branton; Dahryn Trivedi; Gopal Nayak; Aileen Carol Lee, et al. A Comprehensive Analytical Evaluation of the Trivedi Effect® - Energy of Consciousness Healing Treatment on the Physical, Structural, and Thermal Properties of Zinc Chloride. Am. J. Appl. Chem. 2017, 5(1), 7-18. doi: 10.11648/j.ajac.20170501.12
AMA Style
Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak, Aileen Carol Lee, et al. A Comprehensive Analytical Evaluation of the Trivedi Effect® - Energy of Consciousness Healing Treatment on the Physical, Structural, and Thermal Properties of Zinc Chloride. Am J Appl Chem. 2017;5(1):7-18. doi: 10.11648/j.ajac.20170501.12
@article{10.11648/j.ajac.20170501.12, author = {Mahendra Kumar Trivedi and Alice Branton and Dahryn Trivedi and Gopal Nayak and Aileen Carol Lee and Aksana Hancharuk and Carola Marina Sand and Debra Jane Schnitzer and Rudina Thanasi and Eileen Mary Meagher and Faith Ann Pyka and Gary Richard Gerber and Johanna Catharina Stromsnas and Judith Marian Shapiro and Laura Nelson Streicher and Lorraine Marie Hachfeld and Matthew Charles Hornung and Patricia M. Rowe and Sally Jean Henderson and Sheila Maureen Benson and Shirley Theresa Holmlund and Stephen P. Salters and Parthasarathi Panda and Snehasis Jana}, title = {A Comprehensive Analytical Evaluation of the Trivedi Effect® - Energy of Consciousness Healing Treatment on the Physical, Structural, and Thermal Properties of Zinc Chloride}, journal = {American Journal of Applied Chemistry}, volume = {5}, number = {1}, pages = {7-18}, doi = {10.11648/j.ajac.20170501.12}, url = {https://doi.org/10.11648/j.ajac.20170501.12}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajac.20170501.12}, abstract = {Zinc chloride has an importance in pharmaceutical and nutraceutical industries for the prevention and treatment of several diseases. The objective of the current study was to investigate the impact of The Trivedi Effect® - Energy of Consciousness Healing Treatment (Biofield Energy Treatment) on physical, structural, and thermal properties of zinc chloride using PXRD, PSD, FT-IR, UV-vis, TGA, and DSC analysis. Zinc chloride was divided into two parts – one part was control, while other part was treated with The Trivedi Effect® remotely by eighteen renowned Biofield Energy Healers and defined as The Trivedi Effect® Treated sample. A significant change of the crystallite size and relative intensities of the PXRD peaks was observed in The Trivedi Effect® treated sample with respect to the control sample. The average crystallite size of the treated sample was significantly increased by 41.22% compared with the control sample. The size of the particles at d10, d50, and d90 was increased by 8.33%, 6.27%, and 1.83%, respectively in the treated sample compared with the control sample. The surface area of the treated sample was decreased by 5.90% compared with the control sample. The FT-IR spectroscopic analysis revealed that Zn-Cl stretching in the control and treated sample were at 511 and 507 cm-1, respectively. The UV-vis analysis exhibited that wavelength of the maximum absorbance of both the control and treated samples were at 196.4 and 196.3 nm, respectively. The TGA analysis exhibited that weight loss of the treated sample was reduced by 13.98% and 2.43% in the 1st and 2nd steps of degradation, respectively. Consequently, the DSC analysis revealed that the maximum thermal decomposition temperature of the treated sample (489.06°C) was significantly increased by 15.75% compared with the control sample (422.50°C). Moreover, a significant increase in the enthalpy of decomposition was noticed in the treated sample (ΔHdecomp = 131.40 J/g) by 137.10% compared with the control sample (ΔHdecomp = 55.42 J/g). The current study anticipated that The Trivedi Effect® Treatment might lead to produce a new polymorphic form of zinc chloride, which could have better powder flowability and thermal stability. The treated sample could be more stable during manufacturing, delivery or storage conditions than the untreated sample. Hence, the treated zinc chloride would be very useful to design better nutraceutical and/or pharmaceutical formulations that might offer better therapeutic response against inflammatory diseases, immunological disorders, aging, stress, cancer, etc.}, year = {2017} }
TY - JOUR T1 - A Comprehensive Analytical Evaluation of the Trivedi Effect® - Energy of Consciousness Healing Treatment on the Physical, Structural, and Thermal Properties of Zinc Chloride AU - Mahendra Kumar Trivedi AU - Alice Branton AU - Dahryn Trivedi AU - Gopal Nayak AU - Aileen Carol Lee AU - Aksana Hancharuk AU - Carola Marina Sand AU - Debra Jane Schnitzer AU - Rudina Thanasi AU - Eileen Mary Meagher AU - Faith Ann Pyka AU - Gary Richard Gerber AU - Johanna Catharina Stromsnas AU - Judith Marian Shapiro AU - Laura Nelson Streicher AU - Lorraine Marie Hachfeld AU - Matthew Charles Hornung AU - Patricia M. Rowe AU - Sally Jean Henderson AU - Sheila Maureen Benson AU - Shirley Theresa Holmlund AU - Stephen P. Salters AU - Parthasarathi Panda AU - Snehasis Jana Y1 - 2017/02/25 PY - 2017 N1 - https://doi.org/10.11648/j.ajac.20170501.12 DO - 10.11648/j.ajac.20170501.12 T2 - American Journal of Applied Chemistry JF - American Journal of Applied Chemistry JO - American Journal of Applied Chemistry SP - 7 EP - 18 PB - Science Publishing Group SN - 2330-8745 UR - https://doi.org/10.11648/j.ajac.20170501.12 AB - Zinc chloride has an importance in pharmaceutical and nutraceutical industries for the prevention and treatment of several diseases. The objective of the current study was to investigate the impact of The Trivedi Effect® - Energy of Consciousness Healing Treatment (Biofield Energy Treatment) on physical, structural, and thermal properties of zinc chloride using PXRD, PSD, FT-IR, UV-vis, TGA, and DSC analysis. Zinc chloride was divided into two parts – one part was control, while other part was treated with The Trivedi Effect® remotely by eighteen renowned Biofield Energy Healers and defined as The Trivedi Effect® Treated sample. A significant change of the crystallite size and relative intensities of the PXRD peaks was observed in The Trivedi Effect® treated sample with respect to the control sample. The average crystallite size of the treated sample was significantly increased by 41.22% compared with the control sample. The size of the particles at d10, d50, and d90 was increased by 8.33%, 6.27%, and 1.83%, respectively in the treated sample compared with the control sample. The surface area of the treated sample was decreased by 5.90% compared with the control sample. The FT-IR spectroscopic analysis revealed that Zn-Cl stretching in the control and treated sample were at 511 and 507 cm-1, respectively. The UV-vis analysis exhibited that wavelength of the maximum absorbance of both the control and treated samples were at 196.4 and 196.3 nm, respectively. The TGA analysis exhibited that weight loss of the treated sample was reduced by 13.98% and 2.43% in the 1st and 2nd steps of degradation, respectively. Consequently, the DSC analysis revealed that the maximum thermal decomposition temperature of the treated sample (489.06°C) was significantly increased by 15.75% compared with the control sample (422.50°C). Moreover, a significant increase in the enthalpy of decomposition was noticed in the treated sample (ΔHdecomp = 131.40 J/g) by 137.10% compared with the control sample (ΔHdecomp = 55.42 J/g). The current study anticipated that The Trivedi Effect® Treatment might lead to produce a new polymorphic form of zinc chloride, which could have better powder flowability and thermal stability. The treated sample could be more stable during manufacturing, delivery or storage conditions than the untreated sample. Hence, the treated zinc chloride would be very useful to design better nutraceutical and/or pharmaceutical formulations that might offer better therapeutic response against inflammatory diseases, immunological disorders, aging, stress, cancer, etc. VL - 5 IS - 1 ER -