| Peer-Reviewed

Physico-chemical and Concentration of Heavy Metals Analyses in Virgin and Used Lubricating Oils: A Spectroscopy Study

Received: 8 November 2019     Accepted: 25 November 2019     Published: 9 December 2019
Views:       Downloads:
Abstract

As a result of the changes that occur during their use, lubricating oils from automobiles tend to differ in terms of their physical and chemical composition from virgin and used lubricating oils. The analyses of the heavy metals distribution, contaminants and physicochemical parameters of the virgin and used lubricating oils will guide us to select the possible processes that can alter the oil composition. This research examines the heavy metals distribution, contaminants and physicochemical parameters of the virgin and used lubricating oils using Atomic Adsorption Spectrometer for 7 elements using various ASTM D methods. The results obtained shows that there were significant differences in the virgin and used lubricating oils. The deleterious effects of heavy metals, contaminants and physicochemical parameters on the environment have been known for a while. These contaminants not only causes environmental problems, they also have bio-accumulation effects on living organism, poisoning and fouling of catalyst as well as corrode processing equipment. This study also presents results showing us that contaminants, heavy metals and physicochemical parameters play a major role in discriminating of lubricating oil samples.

Published in American Journal of Applied Chemistry (Volume 7, Issue 6)
DOI 10.11648/j.ajac.20190706.14
Page(s) 175-179
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2019. Published by Science Publishing Group

Keywords

Heavy Metals, Physicochemical, Oil Analysis, Contaminants, Lubricating Oils

References
[1] V. Pelitli, Ö. Doğan and H. J. Köroğlu (2017). Waste oil management: Analyses of waste oils from vehicle crankcases and gearboxes, Global J. Environ. Sci. Manage., 3 (1): 11-20, DOI: 10.22034/gjesm.2017.03.01.002.
[2] Temitayo E. Oladimeji, Jacob A. Sonibare, James A. Omoleye, Moses E. Emetere and Francis B. Elehinafe, (2018). A Review on Treatment Methods of Used Lubricating oil, International Journal of Civil Engineering and Technology, 9 (12), pp. 506–514.
[3] Boadu, K. O; Joel, O. F.; Essumang, D. K. and Evbuomwan, B. O. (2019). A Review of Methods for Removal of Contaminants in Used Lubricating Oil, Chemical Science International Journal, 26 (4): 1-11, 2019; Article no. CSIJ. 48620, SCIENCEDOMAIN international www.sciencedomain.org.
[4] Bamiji Z. Adewole, Joshua O. Olojede, Hakeem Ayodele Owolabi and Olaoluwa R. Obisesan (2019). Characterization and Suitability of Reclaimed Automotive Lubricating Oils Reprocessed by Solvent Extraction Technology, Recycling, 4, 31; DOI: 10.3390/recycling4030031 www.mdpi.com/journal/recycling.
[5] Bright Kwakye-Awuah, Ralph Kwakye, Baah Sefa-Ntiri, Isaac Nkrumah, Elizabeth Von-Kiti and Craig Williams (2018). Comparison of the Recycling Efficiency of Metakaolin and Laboratory-Synthesized Zeolite Types LTA and LSX on Used Lubricant Engine Oil, Applied Physics Research; Vol. 10, No. 4; 2018 ISSN 1916-9639 E-ISSN 1916-9647, Published by Canadian Center of Science and Education.
[6] Munirah, A. Z.; Kamaruzaman, W.; Ahmad, W.; Retnam, A.; Ng Catrina (2015): Concentration of heavy metals in virgin, used, recovered and waste oil; a spectroscopic study, Procedia Environmental Sciences 30, pp: 201-204.
[7] Syeda Azeem Unnisa and Malek Hassanpour (2017). Development circumstances of four recycling industries (used motor oil, acidic sludge, plastic wastes and blown bitumen) in the world, Renewable and Sustainable Energy Reviews, 72 (2017) 605–624.
[8] Adebiyi, F. M.; Ayinde, O. B.; Odebunmi, A. O.; Adeyefa, O. M.; (2014): The reclamation of fine lubricating oil from flat lubricating oil using a combination of activated animal charcoal and amberlite, Petroleum Science and Technology, (32), pp: 162-169.
[9] ASTM D7946 – 14 (2014). Standard Test Method for Initial pH (i-pH)-Value of Petroleum Products, ASTM International, West Conshohocken, PA, USA, www.astm.org.
[10] ASTM D4052 - 18a (2018). Standard Test Method for Density, Relative Density, and API Gravity of Liquids by Digital Density Meter, ASTM International, West Conshohocken, PA, USA, www.astm.org.
[11] ASTM D445 - 19 (2019). Standard Test Method for Kinematic Viscosity of Transparent and Opaque Liquids and Calculation of Dynamic Viscosity, ASTM International, West Conshohocken, PA, USA, www.astm.org.
[12] ASTM D6304 - 16e1 (2016). Standard Test Method for Determination of Water in Petroleum Products, Lubricating Oils, and Additives by Coulometric Karl Fischer Titration, ASTM International, West Conshohocken, PA, USA, www.astm.org.
[13] ASTM D2709 - 16 (2016). Standard Test Method for Water and Sediment in Middle Distillate Fuels by Centrifuge, ASTM International, West Conshohocken, PA, USA, www.astm.org.
[14] McKenzie, T., (1981). Atomic absorption spectrophotometry for the analysis of wear metals in oil samples, Varian Instruments at Work, Varian atomic Absorption AA-10, Techtron Pty., Ltd., Australia, pp: 1-9.
[15] Ball, P. G. (1998): New pH Test Offers Benefits over TAN/TBN, Practicing Oil Analysis, Vol. 1, No. 2, Noria.
[16] I. J. Ani, J. O. Okafor, M. A. Olutoye and U. G. Akpan (2015). Effects of Process Variables and a Comparative Study of Methods for Transfer Oil Production from Spent Engine Oil, British Journal of Applied Science & Technology, 9 (1): 65-76, Article no. BJAST. 2015.247 ISSN: 2231-0843, SCIENCEDOMAIN international www.sciencedomain.org.
[17] Ihsan, H.; Talal, Y.; Sardasht, R.; (2013): Recycling of wastes engine oils using a new washing agent, Energies, (6), pp: 1023-1049.
[18] Forsthoffer, W. E., (2011): Lube, seal and control oil system best practices. In Forsthoffer’s Best Practice Handbook for Rotating Machinery, 1st ed., Elsevier: Oxford, UK, pp. 347-468.
[19] E. Epelle, Y. Lukman and A. J. Otaru (2016). A comparative study of the solvent powers of phenol, furfural and NMP in improving the viscosity index of spent lubricating oil, International Research Journal on Engineering, Vol. 3 (1), pp. 008-024, http://www.apexjournal.org ©2016 Apex Journal International.
[20] Eman, A. E, Shoaib, A. M., (2012), Re-refining of used lube oil. II- by Solvent/Clay and Acid/Clay-Percolation Processes, ARPN Journal of Science and Technology, 2, (11): 1-8.
[21] C. T. Pinheiro; V. R. Ascens~ao; C. M. Cardoso; M. J. Quina; L. M. Gando-Ferreira (2017). An overview of waste lubricant oil management system: Physicochemical characterization contribution for its improvement, Journal of Cleaner Production, 150, pp. 301-308.
[22] Kishore Nadkarmi, R. A. (2007): Water and Sediments in Crude Oil. “In Guide to ASTM Test Methods for Analysis of Petroleum Products and Lubricants” 2nd ed.; ASTM International; West Conshohocken, PA, USA, www.astm.org.
[23] M. Pazoki and B. Hasanidarabadi (2017). Management of toxic and hazardous contents of oil sludge in Siri Island, Global J. Environ. Sci. Manage., 3 (1): 33-42, DOI: 10.22034/gjesm.2017.03.01.004.
[24] Aucelio, R. Q.; de Souza, R. M.; de Campos, R. C.; Mieley, N.; Da Silva, C. L. P. (2007): The determination of trace metals in lubricating oils by atomic spectrometry. Spectrochim. Acta Part B At. Spectrosc, 62, pp. 952-961.
[25] Chun Yang, Zeyu Yang, Gong Zhang, Bruce Hollebone, Mike Landriault, Zhendi Wang, Patrick Lambert, Carl E. Brown (2016). Characterization and differentiation of chemical fingerprints of virgin and used lubricating oils for identification of contamination or adulteration sources, Fuel, 163, pp. 271–281.
[26] Henry Mensah-Brown (2015). Re-Refining and Recycling of Used Lubricating Oil: An Option for Foreign Exchange and Natural Resource Conservation in Ghana, ARPN Journal of Engineering and Applied Sciences, Vol. 10. (2), pp. 797-801.
[27] R. U. Owolabi; A. A. Akinola; O. A. Oyelana and M. K. Amosa (2017). Some Physico-Chemical and Adsorptive Reclamation Strategies of Spent Automobile Engine Lubricating Oil; Journal of Engineering Research, Volume 22 (1), pp. 98-106.
[28] Robbins, W. K.; Walker, H. H,; (1975): Analysis of petroleum for trace metals. Determination of trace quantities of cadmium in petroleum by atomic absorption spectrometry. Anal. Chem. (47), pp: 1269-1275.
Cite This Article
  • APA Style

    Boadu Kwasi Opoku, Joel Ogbonna Friday, Essumang David Kofi, Evbuomwan Benson Osa. (2019). Physico-chemical and Concentration of Heavy Metals Analyses in Virgin and Used Lubricating Oils: A Spectroscopy Study. American Journal of Applied Chemistry, 7(6), 175-179. https://doi.org/10.11648/j.ajac.20190706.14

    Copy | Download

    ACS Style

    Boadu Kwasi Opoku; Joel Ogbonna Friday; Essumang David Kofi; Evbuomwan Benson Osa. Physico-chemical and Concentration of Heavy Metals Analyses in Virgin and Used Lubricating Oils: A Spectroscopy Study. Am. J. Appl. Chem. 2019, 7(6), 175-179. doi: 10.11648/j.ajac.20190706.14

    Copy | Download

    AMA Style

    Boadu Kwasi Opoku, Joel Ogbonna Friday, Essumang David Kofi, Evbuomwan Benson Osa. Physico-chemical and Concentration of Heavy Metals Analyses in Virgin and Used Lubricating Oils: A Spectroscopy Study. Am J Appl Chem. 2019;7(6):175-179. doi: 10.11648/j.ajac.20190706.14

    Copy | Download

  • @article{10.11648/j.ajac.20190706.14,
      author = {Boadu Kwasi Opoku and Joel Ogbonna Friday and Essumang David Kofi and Evbuomwan Benson Osa},
      title = {Physico-chemical and Concentration of Heavy Metals Analyses in Virgin and Used Lubricating Oils: A Spectroscopy Study},
      journal = {American Journal of Applied Chemistry},
      volume = {7},
      number = {6},
      pages = {175-179},
      doi = {10.11648/j.ajac.20190706.14},
      url = {https://doi.org/10.11648/j.ajac.20190706.14},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajac.20190706.14},
      abstract = {As a result of the changes that occur during their use, lubricating oils from automobiles tend to differ in terms of their physical and chemical composition from virgin and used lubricating oils. The analyses of the heavy metals distribution, contaminants and physicochemical parameters of the virgin and used lubricating oils will guide us to select the possible processes that can alter the oil composition. This research examines the heavy metals distribution, contaminants and physicochemical parameters of the virgin and used lubricating oils using Atomic Adsorption Spectrometer for 7 elements using various ASTM D methods. The results obtained shows that there were significant differences in the virgin and used lubricating oils. The deleterious effects of heavy metals, contaminants and physicochemical parameters on the environment have been known for a while. These contaminants not only causes environmental problems, they also have bio-accumulation effects on living organism, poisoning and fouling of catalyst as well as corrode processing equipment. This study also presents results showing us that contaminants, heavy metals and physicochemical parameters play a major role in discriminating of lubricating oil samples.},
     year = {2019}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Physico-chemical and Concentration of Heavy Metals Analyses in Virgin and Used Lubricating Oils: A Spectroscopy Study
    AU  - Boadu Kwasi Opoku
    AU  - Joel Ogbonna Friday
    AU  - Essumang David Kofi
    AU  - Evbuomwan Benson Osa
    Y1  - 2019/12/09
    PY  - 2019
    N1  - https://doi.org/10.11648/j.ajac.20190706.14
    DO  - 10.11648/j.ajac.20190706.14
    T2  - American Journal of Applied Chemistry
    JF  - American Journal of Applied Chemistry
    JO  - American Journal of Applied Chemistry
    SP  - 175
    EP  - 179
    PB  - Science Publishing Group
    SN  - 2330-8745
    UR  - https://doi.org/10.11648/j.ajac.20190706.14
    AB  - As a result of the changes that occur during their use, lubricating oils from automobiles tend to differ in terms of their physical and chemical composition from virgin and used lubricating oils. The analyses of the heavy metals distribution, contaminants and physicochemical parameters of the virgin and used lubricating oils will guide us to select the possible processes that can alter the oil composition. This research examines the heavy metals distribution, contaminants and physicochemical parameters of the virgin and used lubricating oils using Atomic Adsorption Spectrometer for 7 elements using various ASTM D methods. The results obtained shows that there were significant differences in the virgin and used lubricating oils. The deleterious effects of heavy metals, contaminants and physicochemical parameters on the environment have been known for a while. These contaminants not only causes environmental problems, they also have bio-accumulation effects on living organism, poisoning and fouling of catalyst as well as corrode processing equipment. This study also presents results showing us that contaminants, heavy metals and physicochemical parameters play a major role in discriminating of lubricating oil samples.
    VL  - 7
    IS  - 6
    ER  - 

    Copy | Download

Author Information
  • World Bank Africa Centre of Excellence, Institute of Petroleum Studies, University of Port Harcourt, Port Harcourt, Nigeria

  • World Bank Africa Centre of Excellence, Institute of Petroleum Studies, University of Port Harcourt, Port Harcourt, Nigeria

  • Department of Chemistry, University of Cape Coast, Cape Coast, Ghana

  • Department of Chemical Engineering, University of Port Harcourt, Port Harcourt, Nigeria

  • Sections