Energy Dispersive X-Ray Fluorescence (EDXRF) is a non-destructive analytical method used to solve problems involving nutritional, mineral, and toxic chemical elements. It is very common in the customization and commerce of jewelry. EDXRF depends on recording spectral lines from the irradiation of isotopes. After a brief review of the interactions of the ions Ca2+, Zn2+, P, Au3+, and Ag+ along with the results of the current study it was revealed that the methodology, when used in a semi-quantitative approach, can successfully identify all elements present in a whalebone sample collected from Santa Catarina Island (Brazil). This article serves as an example to explain the molecular reactions of Ca2+ and the concentration of elements: Cl-, Zn2+, Br, Fe, Mn, Ca, K, S, P, and Si. It was proposed initially to evaluate spectral lines of Ca2+ found in the whalebone (biomarker). The model was then further expanded to explore Ca2+ and its relationships to the intra- and extracellular environments, where the plasma membrane Ca2+-pump (PMCA) is responsible for Ca2+ ejection in most eukaryotic, excitable cells as, eg, in the cardiac tissue with a Na/Ca exchanger. The certified Road Dust (BCR-723, which is in prominence among the reference materials used) could be applied to samples of dust, soils, sediments, fossil fuel, ceramic, and bio-ceramic in general. With the aid of a matching matrix, it has been shown that EDXRF can function even with samples of Au3+ and Ag+. The results with certified reference samples of Road Dust (BCR-723) and its standards serve as a basis for studies of catalyst supports, an eg aluminum oxide containing titanium, erbium, lanthanum, and other elements, and as a model of charged ions.
Published in | American Journal of Applied Chemistry (Volume 11, Issue 1) |
DOI | 10.11648/j.ajac.20231101.11 |
Page(s) | 1-13 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2023. Published by Science Publishing Group |
Radiation of Isotopes, Energy Dispersive X-Ray Fluorescence (EDXRF), Calcium (Ca2+), Silver (Ag+) and Gold (Au3+), Road Dust (BCR-723), Whalebone, Silica Gel Sensor, Electric and Hybrid Vehicles
[1] |
APA Style
Fiedler, H. D., Bueno, P., Fiedler, A. M., Bascuñan, V. F. (2023). Spectral Lines of Ca2+, Au3+, and Ag+ Found in Complex Matrices and Interactions of These Ions with Molecules, Cells and Mineral Surfaces. American Journal of Applied Chemistry, 11(1), 1-13. https://doi.org/10.11648/j.ajac.20231101.11
ACS Style
Fiedler, H. D.; Bueno, P.; Fiedler, A. M.; Bascuñan, V. F. Spectral Lines of Ca2+, Au3+, and Ag+ Found in Complex Matrices and Interactions of These Ions with Molecules, Cells and Mineral Surfaces. Am. J. Appl. Chem. 2023, 11(1), 1-13. doi: 10.11648/j.ajac.20231101.11
@article{10.11648/j.ajac.20231101.11, author = {Haidi Dalinda Fiedler and Priscila Bueno and Augusto Müller Fiedler and Vera Frescura Bascuñan}, title = {Spectral Lines of Ca2+, Au3+, and Ag+ Found in Complex Matrices and Interactions of These Ions with Molecules, Cells and Mineral Surfaces}, journal = {American Journal of Applied Chemistry}, volume = {11}, number = {1}, pages = {1-13}, doi = {10.11648/j.ajac.20231101.11}, url = {https://doi.org/10.11648/j.ajac.20231101.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajac.20231101.11}, abstract = {Energy Dispersive X-Ray Fluorescence (EDXRF) is a non-destructive analytical method used to solve problems involving nutritional, mineral, and toxic chemical elements. It is very common in the customization and commerce of jewelry. EDXRF depends on recording spectral lines from the irradiation of isotopes. After a brief review of the interactions of the ions Ca2+, Zn2+, P, Au3+, and Ag+ along with the results of the current study it was revealed that the methodology, when used in a semi-quantitative approach, can successfully identify all elements present in a whalebone sample collected from Santa Catarina Island (Brazil). This article serves as an example to explain the molecular reactions of Ca2+ and the concentration of elements: Cl-, Zn2+, Br, Fe, Mn, Ca, K, S, P, and Si. It was proposed initially to evaluate spectral lines of Ca2+ found in the whalebone (biomarker). The model was then further expanded to explore Ca2+ and its relationships to the intra- and extracellular environments, where the plasma membrane Ca2+-pump (PMCA) is responsible for Ca2+ ejection in most eukaryotic, excitable cells as, eg, in the cardiac tissue with a Na/Ca exchanger. The certified Road Dust (BCR-723, which is in prominence among the reference materials used) could be applied to samples of dust, soils, sediments, fossil fuel, ceramic, and bio-ceramic in general. With the aid of a matching matrix, it has been shown that EDXRF can function even with samples of Au3+ and Ag+. The results with certified reference samples of Road Dust (BCR-723) and its standards serve as a basis for studies of catalyst supports, an eg aluminum oxide containing titanium, erbium, lanthanum, and other elements, and as a model of charged ions.}, year = {2023} }
TY - JOUR T1 - Spectral Lines of Ca2+, Au3+, and Ag+ Found in Complex Matrices and Interactions of These Ions with Molecules, Cells and Mineral Surfaces AU - Haidi Dalinda Fiedler AU - Priscila Bueno AU - Augusto Müller Fiedler AU - Vera Frescura Bascuñan Y1 - 2023/01/17 PY - 2023 N1 - https://doi.org/10.11648/j.ajac.20231101.11 DO - 10.11648/j.ajac.20231101.11 T2 - American Journal of Applied Chemistry JF - American Journal of Applied Chemistry JO - American Journal of Applied Chemistry SP - 1 EP - 13 PB - Science Publishing Group SN - 2330-8745 UR - https://doi.org/10.11648/j.ajac.20231101.11 AB - Energy Dispersive X-Ray Fluorescence (EDXRF) is a non-destructive analytical method used to solve problems involving nutritional, mineral, and toxic chemical elements. It is very common in the customization and commerce of jewelry. EDXRF depends on recording spectral lines from the irradiation of isotopes. After a brief review of the interactions of the ions Ca2+, Zn2+, P, Au3+, and Ag+ along with the results of the current study it was revealed that the methodology, when used in a semi-quantitative approach, can successfully identify all elements present in a whalebone sample collected from Santa Catarina Island (Brazil). This article serves as an example to explain the molecular reactions of Ca2+ and the concentration of elements: Cl-, Zn2+, Br, Fe, Mn, Ca, K, S, P, and Si. It was proposed initially to evaluate spectral lines of Ca2+ found in the whalebone (biomarker). The model was then further expanded to explore Ca2+ and its relationships to the intra- and extracellular environments, where the plasma membrane Ca2+-pump (PMCA) is responsible for Ca2+ ejection in most eukaryotic, excitable cells as, eg, in the cardiac tissue with a Na/Ca exchanger. The certified Road Dust (BCR-723, which is in prominence among the reference materials used) could be applied to samples of dust, soils, sediments, fossil fuel, ceramic, and bio-ceramic in general. With the aid of a matching matrix, it has been shown that EDXRF can function even with samples of Au3+ and Ag+. The results with certified reference samples of Road Dust (BCR-723) and its standards serve as a basis for studies of catalyst supports, an eg aluminum oxide containing titanium, erbium, lanthanum, and other elements, and as a model of charged ions. VL - 11 IS - 1 ER -