Mushroom cultivation uses a wide variety of lignocellulosic waste and is an efficient way to recycle agro-forest residues to produce food. The cultivation of edible mushrooms using a wood-based substrate represents the bioconversion of that waste into edible protein. This review provides an overview of different wood-based substrates utilised for the production of mushrooms in the world and Nepal. Many agro-forest wastes have been utilized as substrates for the cultivation of mushrooms and have shown good yield with biological efficiency. Four major types of mushroom namely Oyster mushroom (Pleurotus ostreatus (Jacq.) P. Kumm), Button mushroom (Agaricus bisporus), Shiitake mushroom (Lentinula edodes (Berk.) Singer) and Paddy straw mushroom (Volvariella volvacea) are cultivated commercially in Nepal. Paddy straw sawdust, maize cob and sugarcane bagasse were the most used substrates for Oyster mushrooms. Similarly, Quercus spp. and Alnus spp. wood logs were common for growing Shiitake mushrooms. Sawdust from different trees also offers a potential alternative substrate source for mushroom cultivation. Hardwood sawdust was an excellent mushroom substrate as they allow faster colonization providing better structure for the mycelium growth. A study showed the nutrient content, growth and yield of mushrooms vary depending on the substrate utilized. This showed more study is needed to acquire information on wood substrate ensuring the safety of consumers that is economically viable and readily available.
Published in | Innovation (Volume 3, Issue 2) |
DOI | 10.11648/j.innov.20220302.13 |
Page(s) | 53-59 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2022. Published by Science Publishing Group |
Agro-Forest Residue, Lignocellulosic, Substrate, Wood Waste
[1] | Temesgen, T. Application of Mushroom as Food and Medicine. Adv. Biotechnol. Microbiol. 2018, 11, doi: 10.19080/aibm.2018.11.555817. |
[2] | Valverde, M. E.; Hernández-Pérez, T.; Paredes-López, O. Edible Mushrooms: Improving Human Health and Promoting Quality Life. Int. J. Microbiol. 2015, 2015, doi: 10.1155/2015/376387. |
[3] | Willis, K. J. (ed) State of the World’s Fungi; Royal Botanic Garden, Kew, 2018. |
[4] | Royse, D.; Baars, J.; Tan, Q. Current Overview of Mushroom Production in the World. In Edible and medicinal mushrooms: technology and applications.; Zied DC, P.-G. A., Ed.; John Wiley & Sons, Ltd, 2017; Vol. 1, pp. 5–13. |
[5] | Devkota, S.; Aryal, H. parsad Wild Mushrooms of Nepal. In Plant biodiversity in Nepal: Conservation and legal status.; Siwakoti, M; Jha, P. K; Rajbhandary, S. R. S.., Ed.; Botanical Society of Nepal: Kathmandu, Nepal, 2020. |
[6] | Christensen, M.; Bhattarai, S.; Devkota, S.; Larsen, H. O. Collection and Use of Wild Edible Fungi in Nepal. Econ. Bot. 2008, 62, 12–23, doi: 10.1007/s12231-007-9000-9. |
[7] | Bellettini, M. B.; Fiorda, F. A.; Maieves, H. A.; Teixeira, G. L.; Ávila, S.; Hornung, P. S.; Júnior, A. M.; Ribani, R. H. Factors Affecting Mushroom Pleurotus Spp. Saudi J. Biol. Sci. 2019, 26, 633–646, doi: 10.1016/j.sjbs.2016.12.005. |
[8] | Jang, K.-Y.; Jhune, C.-S.; Park, J.-S.; Cho, S.-M.; Weon, H.-Y.; Cheong, J.-C.; Choi, S.-G.; Sung, J.-M. Characterization of Fruitbody Morphology on Various Environmental Conditions in Pleurotus Ostreatus. Mycobiology 2003, 31, 145, doi: 10.4489/myco.2003.31.3.145. |
[9] | Siwulski, M.; Rzymski, P.; Budka, A.; Kalač, P.; Budzyńska, S.; Dawidowicz, L.; Hajduk, E.; Kozak, L.; Budzulak, J.; Sobieralski, K.; et al. The Effect of Different Substrates on the Growth of Six Cultivated Mushroom Species and Composition of Macro and Trace Elements in Their Fruiting Bodies. Eur. Food Res. Technol. 2019, 245, 419–431, doi: 10.1007/s00217-018-3174-5. |
[10] | Jeznabadi, E. K.; Jafarpour, M.; Eghbalsaied, S.; Pessarakli, M. Effects of Various Substrates and Supplements on King Oyster (Pleurotus Eryngii). Compost Sci. Util. 2017, 25, S1–S10, doi: 10.1080/1065657X.2016.1238787. |
[11] | Hoa, H. T.; Wang, C. L.; Wang, C. H. The Effects of Different Substrates on the Growth, Yield, and Nutritional Composition of Two Oyster Mushrooms (Pleurotus Ostreatus and Pleurotus Cystidiosus). Mycobiology 2015, 43, 423–434, doi: 10.5941/MYCO.2015.43.4.423. |
[12] | Cohen, R.; Persky, L.; Hadar, Y. Biotechnological Applications and Potential of Wood-Degrading Mushrooms of the Genus Pleurotus. Appl. Microbiol. Biotechnol. 2002, 58, 582–594, doi: 10.1007/s00253-002-0930-y. |
[13] | Yohannes, B.; Abraham, M.; Bikila, G.; Robel, D.; Getahun, T.; Jale, M.; Malesu, A.; Tsehaynesh, F.; Lalise, D. Selection of Appropriate Substrate for Production of Oyster Mushroom (Pleurotus Ostreatus). J. Yeast Fungal Res. 2020, 11, 15–25, doi: 10.5897/jyfr2019.0187. |
[14] | Paudel, S.; Dhakal, D. Yield Performance of Oyster Mushroom (Pleurotus Ostreatus) on Different Substrate. Arch. Agric. Environ. Sci. 2020, 5, 190–195, doi: 10.26832/24566632.2020.0502016. |
[15] | Ashrafuzzaman, M.; Kamruzzaman, A. K. M.; Razi Ismail, M.; Shahidullah, S. M.; Fakir, S. A. Substrate Affects Growth and Yield of Shiitake Mushroom. African J. Biotechnol. 2009, 8, 2999–3006, doi: 10.5897/AJB09.367. |
[16] | Lin, Q.; Long, L.; Wu, L.; Zhang, F.; Wu, S.; Zhang, W.; Sun, X. Evaluation of Different Agricultural Wastes for the Production of Fruiting Bodies and Bioactive Compounds by Medicinal Mushroom Cordyceps Militaris. J. Sci. Food Agric. 2017, 97, 3476–3480, doi: 10.1002/jsfa.8097. |
[17] | Liang, Z. C.; Liang, C. H.; Wu, C. Y. Various Grain Substrates for the Production of Fruiting Bodies and Bioactive Compounds of the Medicinal Caterpillar Mushroom, Cordyceps Militaris (Ascomycetes). Int. J. Med. Mushrooms 2014, 16, 569–578, doi: 10.1615/IntJMedMushrooms.v16.i6.60. |
[18] | Širić, I.; Humar, M.; Kasap, A.; Kos, I.; Mioč, B.; Pohleven, F. Heavy Metal Bioaccumulation by Wild Edible Saprophytic and Ectomycorrhizal Mushrooms. Environ. Sci. Pollut. Res. 2016, 23, 18239–18252, doi: 10.1007/s11356-016-7027-0. |
[19] | Árvay, J.; Tomáš, J.; Hauptvogl, M.; Kopernická, M.; Kováčik, A.; Bajčan, D.; Massányi, P. Contamination of Wild-Grown Edible Mushrooms by Heavy Metals in a Former Mercury-Mining Area. J. Environ. Sci. Heal. - Part B Pestic. Food Contam. Agric. Wastes 2014, 49, 815–827, doi: 10.1080/03601234.2014.938550. |
[20] | Mleczek, M.; Siwulski, M.; Mikołajczak, P.; Gąsecka, M.; Rissmann, I.; Goliński, P.; Sobieralski, K. Differences in Cu Content in Selected Mushroom Species Growing in the Same Unpolluted Areas in Poland. J. Environ. Sci. Heal. - Part B Pestic. Food Contam. Agric. Wastes 2015, 50, 659–666, doi: 10.1080/03601234.2015.1038959. |
[21] | Rzymski, P.; Mleczek, M.; Niedzielski, P.; Siwulski, M.; Gasecka, M. Potential of Cultivated Ganoderma Lucidum Mushrooms for the Production of Supplements Enriched with Essential Elements. J. Food Sci. 2016, 81, C587–C592, doi: 10.1111/1750-3841.13212. |
[22] | Mleczek, M.; Siwulski, M.; Rzymski, P.; Budzyńska, S.; Gąsecka, M.; Kalač, P.; Niedzielski, P. Cultivation of Mushrooms for Production of Food Biofortified with Lithium. Eur. Food Res. Technol. 2017, 243, 1097–1104, doi: 10.1007/s00217-016-2823-9. |
[23] | Damodaran, D.; Vidya Shetty, K.; Raj Mohan, B. Uptake of Certain Heavy Metals from Contaminated Soil by Mushroom-Galerina Vittiformis. Ecotoxicol. Environ. Saf. 2014, 104, 414–422, doi: 10.1016/j.ecoenv.2013.10.033. |
[24] | Rzymski, P.; Mleczek, M.; Siwulski, M.; Gąsecka, M.; Niedzielski, P. The Risk of High Mercury Accumulation in Edible Mushrooms Cultivated on Contaminated Substrates. J. Food Compos. Anal. 2016, 51, 55–60, doi: 10.1016/j.jfca.2016.06.009. |
[25] | Chang, S.-T.; Miles, P. G. Mushrooms: Cultivation, Nutritional Value, Medicinal Effect, and Environmental Impact; 2nd Editio.; CRC Press: Boca Raton, FL, USA, 2004; |
[26] | Sitaula, H. P.; Dhakal, R.; DC, G.; Kalauni, D. Effect of Various Substrates on Growth and Yield Performance of Oyster Mushroom (Pleurotus Ostreatus) in Chitwan, Nepal. Int. J. Appl. Sci. Biotechnol. 2018, 6, 215–219, doi: 10.3126/ijasbt.v6i3.20859. |
[27] | Manandhar, K. L. Shiitake Log Cultivation in Nepal. In Mushroom growers handbook 2: shiitake cultivation.; Hobbs, C., Ed.; MushWorld: Korea, 2005; pp. 67–72. |
[28] | Mishra, A. D.; Mishra, M. Nutritional Value of Some Local Mushroom Species of Nepal. Janapriya J. Interdiscip. Stud. 2017, 2, 1–11, doi: 10.3126/jjis.v2i1.18060. |
[29] | Shrestha, L. K.; Dhakal, S. C. Comparative Resource Productivity of Oyster (Pleurotus Ostreatus p.) and Button Mushrooms (Agaricus Bisporus j.) in Kathmandu, Nepal. J. Agric. Environ. 2014, 15, 30–40, doi: 10.3126/aej.v15i0.19813. |
[30] | Pandey B. D Nepal Ma Parole Chyau Ko Kheti: Volvariella Volvacea and Volvariella Esculeunta. Krishi (Nepal) 2012, 14, 5–8. |
[31] | Rajchenberg, M. The Genus Grifola (Aphyllophorales, Basidiomycota) in Argentina Revisited. Bol. Soc. Argent. Bot. 2002, 37, 19–27. |
[32] | Harada, E.; Morizono, T.; Sumiya, T.; Meguro, S. Production of Andean-Patagonic Edible Mushroom Grifola Gargal on Wood-Based Substrates. Mycoscience 2015, 56, 616–621, doi: 10.1016/j.myc.2015.06.005. |
[33] | Tisdale, T. E.; Miyasaka, S. C.; Hemmes, D. E. Cultivation of the Oyster Mushroom (Pleurotus Ostreatus) on Wood Substrates in Hawaii. World J. Microbiol. Biotechnol. 2006, 22, 201–206, doi: 10.1007/s11274-005-9020-5. |
[34] | Dasanayaka, P. N.; Wijeyaratne, S. C. Cultivation of Schizophyllum Commune Mushroom on Different Wood Substrates. J. Trop. For. Environ. 2017, 7, 65–73, doi: 10.31357/jtfe.v7i1.3023. |
[35] | Amirta, R.; Herawati, E.; Suwinarti, W.; Watanabe, T. Two-Steps Utilization of Shorea Wood Waste Biomass for the Production of Oyster Mushroom and Biogas – A Zero Waste Approach. Agric. Agric. Sci. Procedia 2016, 9, 202–208, doi: 10.1016/j.aaspro.2016.02.127. |
[36] | Badu, M.; Twumasi, S. K.; Boadi, N. O. Effects of Lignocellulosic in Wood Used as Substrate on the Quality and Yield of Mushrooms. Food Nutr. Sci. 2011, 02, 780–784, doi: 10.4236/fns.2011.27107. |
[37] | Pavlík, M.; Halaj, D. Production and Investment Evaluation of Oyster Mushroom Cultivation on the Waste Dendromass: A Case Study on Aspen Wood in Slovakia. Scand. J. For. Res. 2019, 34, 313–318, doi: 10.1080/02827581.2019.1584639. |
[38] | MC, N.; JN, A.; MC, A.; CR, E. Evaluation of Yield, Heavy Metals and Vitamins Compositions of Pleurotus Pulmonarius (Fries) Quell Fruit Bodies Cultivated on Three Deciduous Tree Logs. J. Environ. Sci. Public Heal. 2018, 02, doi: 10.26502/jesph.96120040. |
[39] | Cyriacus, O. I.; Marycynthia, E. C.; Chinwendu, N. M.; Godsfavour, E. C.;... Productivity, Proximate, and Phytochemicals Contents of Pleurotus Ostreatus (Jacq. Ex. Fr. P. Kumm.) Fruit Bodies Produced on Carbonized Sawdust Substrate. Aust. J. Sci. Technol. 2021, 5, 562–570. |
[40] | Lesmono, I. Development and Production of Lentinula Edodes (Shiitake Mushrooms) on Inoculated Logs of a Range of Tree Species, The University of Melbourne, 2009. |
[41] | Shieh, J.; Hwang, S.; Wood, M. S.-J. of the J.; 1991, U. Cultivation of Shiitake Mushrooms on the Logs of a Conifer, Cunninghamia Lanceolata. J. Japan Wood Res. Soc. 1992, 37, 266–274. |
[42] | Andrade, M. C. N.; Silva, J. H.; Minhoni, M. T. A.; Zied, D. C. Mycelial Growth of Two Lentinula Edodes Strains in Culture Media Prepared with Sawdust Extracts from Seven Eucalyptus Species and Three Eucalyptus Clones. Acta Sci. - Agron. 2008, 30. |
[43] | Cortina-Escribano, M.; Pihlava, J. M.; Miina, J.; Veteli, P.; Linnakoski, R.; Vanhanen, H. Effect of Strain, Wood Substrate and Cold Treatment on the Yield and β-Glucan Content of Ganoderma Lucidum Fruiting Bodies. Molecules 2020, 25, 4732, doi: 10.3390/molecules25204732. |
[44] | Kuhar, F.; Postemsky, P. D.; Bianchinotti, M. V. Conditions Affecting Lingzhi or Reishi Medicinal Mushroom Ganoderma Lucidum (Agaricomycetes) Basidiome Quality, Morphogenesis, and Biodegradation of Wood by-Products in Argentina. Int. J. Med. Mushrooms 2018, 20, 495–506, doi: 10.1615/IntJMedMushrooms.2018026249. |
[45] | Roy, S.; Jahan, M. A.; Das, K. K.; Munshi, S. K.; Noor, R. Artificial Cultivation of Ganoderma Lucidum (Reishi Medicinal Mushroom) Using Different Sawdusts as Substrates. Am. J. Biosci. 2015, 3, 178, doi: 10.11648/j.ajbio.20150305.13. |
[46] | Ma, L.; Lin, Y. Q.; Yang, C.; Ying, Z. H.; Jiang, X. L. Production of Liquid Spawn of an Edible Mushroom, Sparassis Latifolia by Submerged Fermentation and Mycelial Growth on Pine Wood Sawdust. Sci. Hortic. (Amsterdam). 2016, 209, 22–30, doi: 10.1016/j.scienta.2016.06.001. |
[47] | Kant Raut, J. Current Status, Challenges and Prospects of Mushroom Industry in Nepal. Int. J. Agric. Econ. 2019, 4, 154, doi: 10.11648/j.ijae.20190404.13. |
[48] | Dubey, D.; Dhakal, B.; Dhami, K.; Sapkota, P.; Rana, M.; Poudel, N. S.; Aryal, L. Comparative Study on Effect of Different Substrates on Yield Performance of Oyster Mushroom Keywords : Glob. J. Biol. Heal. Sci. 2019, 7, 1–7, doi: 10.24105/2319. |
[49] | Sharma, S.; Yadav, R. K.; Pokhrel, C. Growth and Yield of Oyster Mushroom (Pleurotus Ostreatus) on Different Substrates. J. New Biol. Reports 2013, 02, 3–8, doi: 10.38112/agw.2020.v08i01.001. |
[50] | DFRS State of Nepal’s Forest; Department of Forest Research and Survey: Kathmandu, Nepal, 2015; ISBN 9789937889636. |
[51] | Magrath, W. B.; Shrestha, A.; Subedi, B.; Dulal, H. B.; Baumback, R. Nepal Forest Sector Survey: Policy Priorities and Recommendations; Program on Forests (PROFOR): Washington, DC: Program on Forests (PROFOR), 2013; ISBN 9780985519599. |
[52] | Bhatt, B. P.; Godar Chhetri, S.; Silwal, T.; Poudel, M. Economic Contribution of Forestry Sector to National Economy in Nepal. J. Resour. Ecol. 2021, 12, 620–627, doi: 10.5814/j.issn.1674-764x.2021.05.005. |
APA Style
Sudip Pandey. (2022). Review on Utilization Prospects of Wood-Based Substrate for Mushroom Cultivation. Innovation, 3(2), 53-59. https://doi.org/10.11648/j.innov.20220302.13
ACS Style
Sudip Pandey. Review on Utilization Prospects of Wood-Based Substrate for Mushroom Cultivation. Innovation. 2022, 3(2), 53-59. doi: 10.11648/j.innov.20220302.13
@article{10.11648/j.innov.20220302.13, author = {Sudip Pandey}, title = {Review on Utilization Prospects of Wood-Based Substrate for Mushroom Cultivation}, journal = {Innovation}, volume = {3}, number = {2}, pages = {53-59}, doi = {10.11648/j.innov.20220302.13}, url = {https://doi.org/10.11648/j.innov.20220302.13}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.innov.20220302.13}, abstract = {Mushroom cultivation uses a wide variety of lignocellulosic waste and is an efficient way to recycle agro-forest residues to produce food. The cultivation of edible mushrooms using a wood-based substrate represents the bioconversion of that waste into edible protein. This review provides an overview of different wood-based substrates utilised for the production of mushrooms in the world and Nepal. Many agro-forest wastes have been utilized as substrates for the cultivation of mushrooms and have shown good yield with biological efficiency. Four major types of mushroom namely Oyster mushroom (Pleurotus ostreatus (Jacq.) P. Kumm), Button mushroom (Agaricus bisporus), Shiitake mushroom (Lentinula edodes (Berk.) Singer) and Paddy straw mushroom (Volvariella volvacea) are cultivated commercially in Nepal. Paddy straw sawdust, maize cob and sugarcane bagasse were the most used substrates for Oyster mushrooms. Similarly, Quercus spp. and Alnus spp. wood logs were common for growing Shiitake mushrooms. Sawdust from different trees also offers a potential alternative substrate source for mushroom cultivation. Hardwood sawdust was an excellent mushroom substrate as they allow faster colonization providing better structure for the mycelium growth. A study showed the nutrient content, growth and yield of mushrooms vary depending on the substrate utilized. This showed more study is needed to acquire information on wood substrate ensuring the safety of consumers that is economically viable and readily available.}, year = {2022} }
TY - JOUR T1 - Review on Utilization Prospects of Wood-Based Substrate for Mushroom Cultivation AU - Sudip Pandey Y1 - 2022/06/27 PY - 2022 N1 - https://doi.org/10.11648/j.innov.20220302.13 DO - 10.11648/j.innov.20220302.13 T2 - Innovation JF - Innovation JO - Innovation SP - 53 EP - 59 PB - Science Publishing Group SN - 2994-7138 UR - https://doi.org/10.11648/j.innov.20220302.13 AB - Mushroom cultivation uses a wide variety of lignocellulosic waste and is an efficient way to recycle agro-forest residues to produce food. The cultivation of edible mushrooms using a wood-based substrate represents the bioconversion of that waste into edible protein. This review provides an overview of different wood-based substrates utilised for the production of mushrooms in the world and Nepal. Many agro-forest wastes have been utilized as substrates for the cultivation of mushrooms and have shown good yield with biological efficiency. Four major types of mushroom namely Oyster mushroom (Pleurotus ostreatus (Jacq.) P. Kumm), Button mushroom (Agaricus bisporus), Shiitake mushroom (Lentinula edodes (Berk.) Singer) and Paddy straw mushroom (Volvariella volvacea) are cultivated commercially in Nepal. Paddy straw sawdust, maize cob and sugarcane bagasse were the most used substrates for Oyster mushrooms. Similarly, Quercus spp. and Alnus spp. wood logs were common for growing Shiitake mushrooms. Sawdust from different trees also offers a potential alternative substrate source for mushroom cultivation. Hardwood sawdust was an excellent mushroom substrate as they allow faster colonization providing better structure for the mycelium growth. A study showed the nutrient content, growth and yield of mushrooms vary depending on the substrate utilized. This showed more study is needed to acquire information on wood substrate ensuring the safety of consumers that is economically viable and readily available. VL - 3 IS - 2 ER -