-
Synthesis and Characterization of Bi-Functional Poly (Acrylic Acid-Co-2-hydroxyethylmethacrylate) Coated Iron Oxide Magnetic Composite Particles
Tania Tofaz,
Dhananjoy Chandra Mahanto,
Shamima Akhter,
Md. Mahbubor Rahman,
M. Abdul Latif
Issue:
Volume 5, Issue 1, March 2019
Pages:
1-8
Received:
7 January 2019
Accepted:
11 February 2019
Published:
5 March 2019
Abstract: This paper covers the targetable magnetic iron oxide core and biodegradable, cost-effective, eco-friendly polymer shell considering their versatile and extensive use in various fields. In this work, poly (acrylic acid–co-2-hydroxyethylmethacrylate) [P (AA-co-HEMA)] magnetic composite polymer particles were synthesized by the method of two-stage solution polymerization in aqueous media. At first synthesis, the Fe3O4 particles by a traditional co-precipitation method and in the second stage occurs the formation of the polymer using acrylic acid (AA) as monomer and 2-hydroxyethyl methacrylate (HEMA) as co-monomer. Finally, the synthesized iron oxide particles encapsulated by a polymer to modify the surface of composite particles. The modified composite particles were then characterized by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffractometry (XRD), Dynamic Light Scattering (DLS), Thermo Gravimetric Analysis (TGA) and Vibrating Sample Magnetometry (VSM). The existence of carboxyl (-COOH) & hydroxyl (-OH) groups in the composite particles was confirmed by FTIR. XRD indicated the crystalline cubic spinel structure of magnetic composite particles. VSM results showed that the synthesized coated composite particles were paramagnetic in nature magnetic saturation is obtained 72.72 emu/g and 97.9 emu/g for bare Fe3O4 and coated magnetic composite particles respectively.
Abstract: This paper covers the targetable magnetic iron oxide core and biodegradable, cost-effective, eco-friendly polymer shell considering their versatile and extensive use in various fields. In this work, poly (acrylic acid–co-2-hydroxyethylmethacrylate) [P (AA-co-HEMA)] magnetic composite polymer particles were synthesized by the method of two-stage sol...
Show More
-
Constructing of Highly Ordered 3D Network of Carbon Nanotube inside Polymer Matrix and the Improvements in Properties of the Composites
Liang Yang,
Yan Zheng,
Min Hou,
Wanyi Chen,
Zhaoqun Wang
Issue:
Volume 5, Issue 1, March 2019
Pages:
9-15
Received:
21 January 2019
Accepted:
28 February 2019
Published:
21 March 2019
Abstract: In the past few decades, carbon nanotube-filled polymer composites have attracted the attention of many researchers with their excellent performance. However, the currently known methods of preparing composite materials do not maximize the performance of the carbon nanotubes themselves. In this work, by using our proposed “particle-constructing” method, multi-wall carbon nanotubes (MWCNTs) connected with each other to form highly ordered 3D network structure in polystyrene (PS) matrix. The strategy contains two steps as follows. First, MWCNTs-coated PS composite particles were prepared by the thermodynamic driving heterocoargulation method, without any requirement to surface modification or surface treatment whether for the MWCNTs or the PS microspheres. Then, the resultant MWCNTs-coated PS composite particles are used as building blocks to fabricate the highly ordered 3D MWCNT-based PS composite materials by a general compression mould at room temperature and a subsequent heat treatment at an appropriate temperature. We discuss in detail the effects of PS particle size, oxidation of MWCNTs and their length on the electrical conductivity of materials. The fabricated MWCNT-based PS composite materials exhibited excellent properties such as a much higher electrical and mechanical properties. Moreover, the method and process are pretty simple, convenient and environment-friendly for obtaining the unique composite structure and excellent properties.
Abstract: In the past few decades, carbon nanotube-filled polymer composites have attracted the attention of many researchers with their excellent performance. However, the currently known methods of preparing composite materials do not maximize the performance of the carbon nanotubes themselves. In this work, by using our proposed “particle-constructing” me...
Show More
-
The Removal of Single and Binary Basic Dyes from Synthetic Wastewater Using Bentonite Clay Adsorbent
Olaseni Segun Esan,
Akeremale Olaniran Kolawole,
Aboluwoye Christopher Olumuyiwa
Issue:
Volume 5, Issue 1, March 2019
Pages:
16-28
Received:
25 September 2018
Accepted:
4 March 2019
Published:
21 March 2019
Abstract: In order to broaden the application of Bentonite clay, an easily obtainable and bio-available low cost adsorbent, it was employed for the decolourization of synthetic wastewater consisting of single and binary basic dyes (Malachite green and Rhodamine b). The adsorbent was used as obtained without any further modification and also characterized for its specific surface area, point of zero charge and its surface functional groups pre and post dyes sorption was determined using Fourier Transform Infrared Spectroscopy (FTIR). Batch adsorption methods were employed in order to study the effects of pH, Ionic strength and contact time in the single solute system. The parameters of sorption of Rhodamine B (RDB) and Malachite green (MG) were obtained and fitted to three isotherm models; Freundlich, Langmuir and Temkin. The Freundlich plot analysis indicated the process occurred via heterogeneous coverage of adsorbent by both dyes. The kinetics of adsorption data were analyzed using the; pseudo-first order, pseudo-second order, Intraparticle diffusion, film diffusion, and Boyd kinetic models. Over the study of these parameters, the film diffusion mechanism was found to predominate in the sorption process of the dyes. Competitive sorption studies were carried out by using both dyes as either the adsorbate of interest or as the interfering specie. The competitive co-coefficient values obtained from interfering MG in RDB removal were significantly lower than those obtained from interfering RDB in MG removal, indicating that the presence of RDB in the aqua matrix had antagonistic effect on MG adsorption by Bentonite.
Abstract: In order to broaden the application of Bentonite clay, an easily obtainable and bio-available low cost adsorbent, it was employed for the decolourization of synthetic wastewater consisting of single and binary basic dyes (Malachite green and Rhodamine b). The adsorbent was used as obtained without any further modification and also characterized for...
Show More
-
The Influence of the Number of Laser Pulses on the Thickness and Roughness of TiO2 Thin Films Fabricated Using Pulsed Laser Deposition
Ahmed Mohamed Salih,
Nafie Abdallatief Almuslet,
Abdelmoneim Mohamed Awadelgied
Issue:
Volume 5, Issue 1, March 2019
Pages:
29-34
Received:
2 March 2019
Accepted:
10 April 2019
Published:
6 May 2019
Abstract: In this work Titanium Dioxide thin films were fabricated by pulsed laser deposition technique (PLD) using a Q-switched Nd: YAG laser. Titanium dioxide powder, in the Anatase form, was compressed to form solid disks. Each of these disks was irradiated with different number of laser pulses (5, 10 and 15 pulses) with the same pulse energy (150 mJ) and same Repetition rate (10 Hz). The thickness and topography of each deposited thin films were characterized using atomic force microscopy (AFM). The results showed that the thickness of the film increase exponentially when the number of laser pulses increased. The results showed also that the average roughness (Ra) of the films and the root means square roughness (RMS) increased with increasing the number of pulses exponentially to specific value and then decreased exponentially in a behavior like the Gaussian shape.
Abstract: In this work Titanium Dioxide thin films were fabricated by pulsed laser deposition technique (PLD) using a Q-switched Nd: YAG laser. Titanium dioxide powder, in the Anatase form, was compressed to form solid disks. Each of these disks was irradiated with different number of laser pulses (5, 10 and 15 pulses) with the same pulse energy (150 mJ) and...
Show More