Simulation of Entry and Propagation of Pu Isotopes and 241Am on Ukraine Territory
Maryna Kozhevnikova,
Volodymyr Levenets
Issue:
Volume 5, Issue 3, September 2019
Pages:
20-26
Received:
21 February 2019
Accepted:
3 April 2019
Published:
25 October 2019
Abstract: Since the entry of transuranium elements (TUE) into the environment, the 241Am content in different ecological system objects continues to increase as a result of 241Pu beta decay. The ionizing radiation of these isotopes and their impact on the ecological situation in the propagation areas give rise to grave concern. The soil contamination with TUE radionuclides in Ukraine has stemmed mainly from two sources: global fallouts and Chernobyl nuclear power plant (NPP) accident. The ChNPP accident has led to nonuniform contamination with transuranium radionuclides, including Pu isotopes and 241Am. To determine the contamination source characteristics, it was used the Receptor Modeling technique. For computing the trajectories of radionuclide propagation in atmosphere, and for preparing the radionuclide fallout maps, the HYSPLIT program was used. In consequence of the present studies it was constructed the maps of 241Pu concentrations in air and soil in the territory of Ukraine in 1986. The forecast model has been created for 241Am distribution at the time of the maximum isotope activity in 2059. The given results point to the necessary of further investigation of the data on the 241Am accumulation and its effect on different ecosystems. This will permit the improvement of forecast models in emergency planning for protection of population health and rehabilitation of affected territories.
Abstract: Since the entry of transuranium elements (TUE) into the environment, the 241Am content in different ecological system objects continues to increase as a result of 241Pu beta decay. The ionizing radiation of these isotopes and their impact on the ecological situation in the propagation areas give rise to grave concern. The soil contamination with TU...
Show More
Hartree-fock Methods Analysis Protonated Rhodochrosite Crystal and Potential in the Elimination of Cancer Cells Through Synchrotron Radiation
Ricardo Gobato,
Marcia Regina Risso Gobato,
Alireza Heidari,
Abhijit Mitra
Issue:
Volume 5, Issue 3, September 2019
Pages:
27-36
Received:
27 September 2019
Accepted:
11 October 2019
Published:
25 October 2019
Abstract: The rhodochrosite as crystal oscillator for being an alternative to those of quartz. The rhodochrosite (MnCO3) shows complete solid solution with siderite (FeCO3), and it may contain substantial amounts of Zn, Mg, Co, and Ca. There is no precedent in the literature on the treatment of tumor tissues by eliminating these affected tissues, using rhodocrosite crystals in tissue absorption and eliminating cancerous tissues by synchrotron radiation. The studies that are found are the research papers of this team. Through an unrestricted Hartree-Fock (UHF) computational simulation, Compact effective potentials (CEP), the infrared spectrum of the protonated rhodochrosite crystal, CH19Mn6O8, and the load distribution by the unit molecule by two widely used methods, Atomic Polar Tensor (APT) and Mulliken, were studied. The rhodochrosite crystal unit cell of structure CMn6O8, where the load distribution by the molecule was verified in the UHF CEP-4G (Effective core potential (ECP) minimal basis), UHF CEP-31G (ECP split valance) and UHF CEP-121G (ECP triple-split basis). The largest load variation in the APT and Mulliken methods were obtained in the CEP-121G basis set, with δ = 2.922 e δ = 2.650 u. a., respectively, being δAPT > δMulliken. The maximum absorbance peaks in the CEP-4G, CEP-31G and CEP-121G basis set are present at the frequencies 2172.23 cm-1, with a normalized intensity of 0.65; 2231.4 cm-1 and 0.454; and 2177.24 cm-1 and 1.0, respectively. An in-depth study is necessary to verify the absorption by the tumoral and non-tumoral tissues of rhodochrosite, before and after irradiating of synchrotron radiation using Small–Angle X–Ray Scattering (SAXS), Ultra–Small Angle X–Ray Scattering (USAXS), Fluctuation X–Ray Scattering (FXS), Wide–Angle X–Ray Scattering (WAXS), Grazing–Incidence Small–Angle X–Ray Scattering (GISAXS), Grazing–Incidence Wide–Angle X–Ray Scattering (GIWAXS), Small–Angle Neutron Scattering (SANS), Grazing–Incidence Small–Angle Neutron Scattering (GISANS), X–Ray Diffraction (XRD), Powder X–Ray Diffraction (PXRD), Wide–Angle X–Ray Diffraction (WAXD), Grazing– Incidence X–Ray Diffraction (GIXD) and Energy–Dispersive X–Ray Diffraction (EDXRD). Later studies could check the advantages and disadvantages of rhodochrosite in the treatment of cancer through synchrotron radiation, such as one oscillator crystal. Studying the sites of rhodocrosite action may lead to a better understanding of its absorption by healthy and/or tumor tissues, thus leading to a better application of synchrotron radiation to the tumors to eliminate them.
Abstract: The rhodochrosite as crystal oscillator for being an alternative to those of quartz. The rhodochrosite (MnCO3) shows complete solid solution with siderite (FeCO3), and it may contain substantial amounts of Zn, Mg, Co, and Ca. There is no precedent in the literature on the treatment of tumor tissues by eliminating these affected tissues, using rhodo...
Show More