Abstract: Topological indices have been used to modeling biological and chemical properties of molecules in quantitive structure property relationship studies and quantitive structure activity studies. All the degree based topological indices have been defined via classical degree concept. In this paper we define two novel degree concepts for a vertex of a simple connected graph: Van degree and reverse Van degree. And also we define Van and reverse Van indices of a simple connected graph by using the Van degrees concepts. We compute the Van and reverse Van indices for well-known simple connected graphs such as paths, stars, complete graphs and cycles.Abstract: Topological indices have been used to modeling biological and chemical properties of molecules in quantitive structure property relationship studies and quantitive structure activity studies. All the degree based topological indices have been defined via classical degree concept. In this paper we define two novel degree concepts for a vertex of a s...Show More
Abstract: The Haar wavelet method applied to different kinds of integral equations (Fredholm integral equation, integro-differential equations and system of linear Fredholm integral equations) and boundary value problems (BVP) representation of integral equations. Three test problems whose exact solutions are known were considered to measure the performance of Haar wavelet. The calculations show that solving the problem as integral equation is more accurate than solving it as differential equation. Also the calculations show the efficiency of Haar wavelet in case of F. I. E. S and integro-differential equations comparing with other methods, especially when we increase the number of collocation points. All calculations are done by the Computer Algebra Facilities included in Mathematica 10.2.Abstract: The Haar wavelet method applied to different kinds of integral equations (Fredholm integral equation, integro-differential equations and system of linear Fredholm integral equations) and boundary value problems (BVP) representation of integral equations. Three test problems whose exact solutions are known were considered to measure the performance ...Show More
Abstract: We considering the problem of solving a nonlinear differential equation in the Banach space of real functions and continuous on a bounded and closed interval. By means of the fixed point theory for a strict set contraction operator, this paper investigates the existence, nonexistence, and multiplicity of positive solutions for a nonlinear higher order boundary value problem.Abstract: We considering the problem of solving a nonlinear differential equation in the Banach space of real functions and continuous on a bounded and closed interval. By means of the fixed point theory for a strict set contraction operator, this paper investigates the existence, nonexistence, and multiplicity of positive solutions for a nonlinear higher or...Show More