Scattering Due to Non-magnetic Disorder in 2D Anisotropic d-wave High Tc Superconductors
Pedro Contreras,
Dianela Osorio
Issue:
Volume 5, Issue 1, June 2021
Pages:
1-7
Received:
30 May 2021
Accepted:
11 June 2021
Published:
21 June 2021
Abstract: Inspired by the studies on the influence of transition metal impurities in high Tc superconductors and what is already known about nonmagnetic suppression of Tc in unconventional superconductors, we set out to investigate the behavior of the nonmagnetic disordered elastic scattering for a realistic 2D anisotropic high Tc superconductor with line nodes and a Fermi surface in the tight-binding approximation. For this purpose, we performed a detailed self-consistent 2D numerical study of the disordered averaged scattering matrix with nonmagnetic impurities and a singlet line nodes order parameter, varying the concentration and the strength of the impurities potential in the Born, intermediate and unitary limits. In a high Tc anisotropic superconductor with a tight binding dispersion law averaging over the Fermi surface, including hopping parameters and an order parameter in agreement with experimental data, the tight-binding approximation reflects the anisotropic effects. In this study, we also included a detailed visualization of the behavior of the scattering matrix with different sets of physical parameters involved in the nonmagnetic disorder, which allowed us to model the dressed scattering behavior in different regimes for very low and high energies. With this study, we demonstrate that the scattering elastic matrix is affected by the non-magnetic disorder, as well as the importance of an order parameter and a Fermi surface in agreement with experiments when studying this effect in unconventional superconductors.
Abstract: Inspired by the studies on the influence of transition metal impurities in high Tc superconductors and what is already known about nonmagnetic suppression of Tc in unconventional superconductors, we set out to investigate the behavior of the nonmagnetic disordered elastic scattering for a realistic 2D anisotropic high Tc superconductor with line no...
Show More
Nadal’s Limit (L/V) to Wheel Climb and Two Derailment Modes
Issue:
Volume 5, Issue 1, June 2021
Pages:
8-14
Received:
9 May 2021
Accepted:
25 May 2021
Published:
30 June 2021
Abstract: This paper did a theoretical study on the Nadal’s L/V ratio. The analysis is based on a mechanical model of an object sliding on an incline (or slope), which is widely used in college physics. The key is that the direction of frictional forces is always opposite to the direction of the motion of the sliding object. Therefore, there are two directions (upward or downward) for the frictional forces between the object and incline depending on the states of motion of the object. Thus, there must be two L/V ratios for the object sliding on the incline for the same reason. The theoretical demonstration shows that Nadal’s L/V is the same with the L/V which governs the downward motion of the object on the incline, because the direction of frictional force between the object and the incline is set to be upwards in the derivation of the Nadal’s L/V. Thus, Nadal’s L/V is for the object going down the incline. A detail examination was performed on the Nadal’s L/V for some typical configurations, such as the critical angle; the zero and 90 degrees angles, further proving that the Nadal’s L/V is not for an object going up on the incline, thus cannot be used as the criterion for wheel climb. A new L/V ratio was created by setting the direction of frictional force downwards to simulate the object going up on the incline, and was named as Huang’s L/V. Wheel flange/rail contact produces frictional forces between them to consume the pulling power, like a braking to slowdown wheel rotation. Thus, wheel climb is only 1/3 of the whole story of wheel flange/rail contact. The other two are 1). A retarder derailment mode is created by the braking and 2). A braking, large enough, will cause a wheel locked. Therefore, there are two derailment modes with wheel/flange rail contact, wheel climb modes and retarder mode. A method to determine which mode was initiated was demonstrated in the paper. Angle of Attack (AoA) introduces a complicated scenario for wheel climb calculations. It is almost impossible to determine a correct L/V ratio under AoA.
Abstract: This paper did a theoretical study on the Nadal’s L/V ratio. The analysis is based on a mechanical model of an object sliding on an incline (or slope), which is widely used in college physics. The key is that the direction of frictional forces is always opposite to the direction of the motion of the sliding object. Therefore, there are two directio...
Show More