Numerical Model with Finite Differences Approach for CRS Consolidation Test
Abderrahmane Henniche,
Smain Belkacemi
Issue:
Volume 3, Issue 3, September 2018
Pages:
26-35
Received:
13 November 2018
Accepted:
5 December 2018
Published:
3 January 2019
Abstract: The Constant Rate of Strain (CRS) consolidation test is extensively used in last time to estimate the settlement of clayey soils in many geotechnical laboratories. Different theoretical solutions and numerical models have been developed to estimate consolidation parameters from CRS consolidation test data, and investigate the strain rate effect on the CRS consolidation results. In this study, a new numerical model is developed to simulate CRS consolidation test for small and large strain conditions and for both linear and nonlinear soils. This numerical model is based on the solution of Terzaghi’s classical consolidation equation by finite differences approach, with taking into account the variation of sample height with test time. Results of this numerical model indicate that applied vertical load at the top boundary of sample and excess pore pressure at its base are dependent on the applied strain rate. Evaluation of the consolidation parameters from numerical results of this model with small and large theoretical solutions shows excellent agreement between all methods in small strain level, and when large strain conditions are reached only use of large strain theories can produce good convergence with model results. However, when great strain rates (approximately β ≥ 0.1) are applied, a significant error can be observed in consolidation parameters calculation by using both small and large solutions. Finally, simulation of some experimental CRS tests reported in literature with this numerical model provides comparable consolidation parameters to those evaluated from the experimental CRS tests data.
Abstract: The Constant Rate of Strain (CRS) consolidation test is extensively used in last time to estimate the settlement of clayey soils in many geotechnical laboratories. Different theoretical solutions and numerical models have been developed to estimate consolidation parameters from CRS consolidation test data, and investigate the strain rate effect on ...
Show More