Determination of Friction Coefficient Between Straight Steel Fiber and the Concrete Fri (SSF.C)
Issue:
Volume 4, Issue 2, April 2015
Pages:
20-29
Received:
30 January 2015
Accepted:
11 February 2015
Published:
16 February 2015
Abstract: The friction forces between steel fiber and the concrete in the case of Straight Steel Fiber Reinforced Concrete (SSFRC) are considered as the main factor to generate the bonding between these two building construction materials. Three types of steel fiber are usually used in Fiber Reinforced Concrete (FRC) Straight, Dramix and Tabix. In the case of using straight steel fiber as reinforcement material to improve the resistance capacity of plain concrete under axial or flexural tension forces to obtain Steel Fiber Reinforced Concrete (SFRC), bonding forces at the interface between the steel fiber and the concrete matrix must be satisfactory. Bonding forces between these two materials are generated due to friction forces at the interface; therefore the final evaluation of the bonding forces is related with the real value of the friction forces, consequently the friction coefficient value between straight steel fiber and the concrete is important to evaluate and calculate the real value of the friction forces. This paper is devoted to introduce an experimental study about the mechanism of removing straight steel fiber from concrete matrix which is named as (pull-out test) as well as a programming simulations prepared to represent this mechanism too, these laboratory experiment and computer simulations have been used in determination process of friction coefficient value between straight steel fiber and the concrete Fri (SSF.C).
Abstract: The friction forces between steel fiber and the concrete in the case of Straight Steel Fiber Reinforced Concrete (SSFRC) are considered as the main factor to generate the bonding between these two building construction materials. Three types of steel fiber are usually used in Fiber Reinforced Concrete (FRC) Straight, Dramix and Tabix. In the case o...
Show More
Growth of Zinc Oxide Nanocombs on Porous Silicon Layer by Thermal-Evaporation Method
Issue:
Volume 4, Issue 2, April 2015
Pages:
30-35
Received:
15 February 2015
Accepted:
26 February 2015
Published:
8 March 2015
Abstract: Zinc oxide (ZnO) film was deposited on a porous silicon (PS) layer prepared by electrochemical etching through the thermal-evaporation method. ZnO nanocombs structure arrays were directly fabricated on the PS substrate through zinc powder evaporation, which uses a simple thermal-evaporation method without a catalyst. The ZnO nanocombs were highly oriented along the c-axis perpendicular to the PS layer. The average crystallite size of the PS and the ZnO nanocombs were 17.06 and 17.94 nm, respectively. The photoluminescence emission spectra of the ZnO nanocombs grown on the PS layer showed three emission peaks. The two peaks located at 387.5 and 605 nm were caused by the ZnO nanocombs, whereas the third peak located at 637.5 nm was caused by the PS layer. The ZnO nanocombs grown on the PS layer exhibited exceptional light trapping at wavelengths ranging from 400 to 1000 nm, which was expected to increase the efficiency of nano-electronic and nano-optical devices such as (solar cells).
Abstract: Zinc oxide (ZnO) film was deposited on a porous silicon (PS) layer prepared by electrochemical etching through the thermal-evaporation method. ZnO nanocombs structure arrays were directly fabricated on the PS substrate through zinc powder evaporation, which uses a simple thermal-evaporation method without a catalyst. The ZnO nanocombs were highly o...
Show More