Review: Essential Oils A Viable Pest Control Alternative
Julio Garay,
Thomas Brennan,
Dori Bon
Issue:
Volume 5, Issue 2, June 2020
Pages:
13-22
Received:
31 October 2019
Accepted:
20 November 2019
Published:
9 June 2020
Abstract: Indiscriminate use of pesticides is troublesome in our environment, creating toxic soils, groundwater, ponds and lakes, and oceans. Application of chemical pest control results in the death of many insects. These toxic chemicals interrupt entire ecosystems, causing havoc on pollinators such as bees and other beneficial insects, birds and animals as well as humans. It has been estimated that about 2.5 million tons of pesticides are used on crops each year, and that the worldwide damage caused by pesticides reaches $100 billion annually. This paper summarizes the results found in the scientific literature and highlights the fact that secondary metabolites of plants are involved in the interaction with other species, primarily in the defense response of plants against pests. These secondary metabolites sometimes called botanicals represent a huge reservoir of chemical structures with pesticidal activity largely underutilized in modern times compared to the industrial scale seen with chemical pesticides. There are several advantages of botanical pesticides including fast degradation by sunlight and moisture or by detoxifying enzymes. The target-specific nature and lower phytotoxicity of these botanicals have prompted researchers to investigate more in depth the mechanisms of action and structure-activity relationship of these botanicals in order to evaluate their potential as a viable pest management system. Higher plants produce a diverse array of secondary metabolites, which include phenols, terpenes, alkaloids, lignans and their glycosides. This variety of active compounds plays a significant role in the defense mechanisms of plants, and potentially offers a more sustainable platform to develop structural prototypes in order to identify lead molecules/products that can eventually serve as new environmentally friendly pest control agents. Alternative green methods of pest control are found in essential oils as single or multi component preparations. The positive results in repellency and killing of predatory insects proved to be both safe and biodegradable and have a broad spectrum of applications with no re-entry time. Essential oil pest controls are widely used in organic pest management practices globally, and the emerging market reflects steady growth in agriculture, home and garden, equine, livestock, turf, pets and more. Moreover, new fields of business, research and development for understanding the complexities of plant-based oils and their benefits can be created.
Abstract: Indiscriminate use of pesticides is troublesome in our environment, creating toxic soils, groundwater, ponds and lakes, and oceans. Application of chemical pest control results in the death of many insects. These toxic chemicals interrupt entire ecosystems, causing havoc on pollinators such as bees and other beneficial insects, birds and animals as...
Show More
Comparative Study on Heavy Metals and Hydrocarbons Accumulation in Cassava Tubers Harvested from Four Different Locations in Rivers State, Nigeria
Ndukwe Gloria Ihuoma,
Odinga Tamuno-boma,
Gabriel-Brisibe Christine Umanu,
George Damiete Amabinba,
Fou Erekedoumene
Issue:
Volume 5, Issue 2, June 2020
Pages:
23-28
Received:
16 June 2020
Accepted:
28 June 2020
Published:
28 July 2020
Abstract: The threat to humans, animals, and plants life by pollution due to gas flare and oil and gas industrial activities cannot be overemphasized. This study compared the hydrocarbons and heavy metals accumulation in cassava tubers harvested from four different locations in Rivers State. The study areas include Rukpoku, Rivers State University (RSU) farm, Eleme community and Nkpolu-Oroworukwo community. Cassava tubers were collected from farms located in the aforementioned areas, prepared and analyzed for hydrocarbons and heavy metals contents. Standard spectro-analytical method was used to determine the concentrations of zinc (Zn), iron (Fe), lead (Pb), copper (Cu) and manganese (Mn), while polycyclic aromatic hydrocarbons (PAHs), total polycyclic hydrocarbon (TPH) and BTEX (benzene, toluene, ethyl benzene, xylene) were analyzed using standard chromatographic procedure. Results obtained from the analyses revealed the presence of heavy metals in all the samples in the order Eleme > Nkpolu-Oroworukwo > Rukpoku > RSU farm. Pb was not detected in the entire sample analyzed, Mn was below the permissible range, while Zn, Fe and Cu were above the permissible range. TPH was detected in all samples analyzed in the order Eleme > Nkpolu-Oroworukwo > Rukpoku > RSU farm. RSU farm had the least concentration of PAH, While BTEX was not detected in all samples analyzed. The results suggest the presence of heavy metals and hydrocarbons (anthracene, acenaphthene, phenanthrene, fluoranthene, pyrene, benz (a) anthracene, benz (b) fluoranthene, indeno (1,2,3-cd) pyrene, dibenz (a, h) anthracene) in cassava tubers harvested from the study locations, but with greatest accumulation in samples from Eleme community and least in those from RSU farm. Consumption of such crops could pose health challenges to the consumers over time.
Abstract: The threat to humans, animals, and plants life by pollution due to gas flare and oil and gas industrial activities cannot be overemphasized. This study compared the hydrocarbons and heavy metals accumulation in cassava tubers harvested from four different locations in Rivers State. The study areas include Rukpoku, Rivers State University (RSU) farm...
Show More