The Grain Security Assessment Based on Improved TOPSIS Model in Yunnan Province China
Issue:
Volume 4, Issue 3, September 2019
Pages:
56-63
Received:
24 June 2019
Accepted:
16 July 2019
Published:
7 October 2019
Abstract: Food security has become an important part of the security of all countries in the world, especially in a populous country like China. This paper analyzes the impact of different influencing factors on food security in Yunnan Province, and establishes an appropriate evaluation index system to analyze and evaluate the food security of Yunnan Province under the changing environment of 2001-2016. Firstly, the principal factors analysis method is used to divide the factors affecting food security in Yunnan Province into three levels: natural conditions, social development and technology level, and agricultural management level. Secondly, the entropy weight method is combined with the OWA operator to obtain the Yunnan Province. The main influencing factors are the total power of agricultural machinery, the amount of agricultural chemical fertilizer and the proportion of the primary industry's output value to GDP. Finally, using the improved gray correlation TOPSIS model, the food security in Yunnan Province has basically shown a trend of volatility growth since 2001. The calculation results show that since 2001, food security in Yunnan Province has shown a growth trend, the grain production has been effectively secured in Yunnan Province. In its three criteria levels, social development and technological level and agricultural management levels are steadily increasing, except for natural condition is volatile. In the future, Yunnan Province should reduce its dependence on mechanical power and fertilizer in the grain production process, further expand the development of green agriculture and organic agriculture, and ensure food safety production in many aspects.
Abstract: Food security has become an important part of the security of all countries in the world, especially in a populous country like China. This paper analyzes the impact of different influencing factors on food security in Yunnan Province, and establishes an appropriate evaluation index system to analyze and evaluate the food security of Yunnan Provinc...
Show More
Effect of Curcumin and Nano-curcumin on Reduce Aluminum Toxicity in Rats
Rehab Mohamed Ibrahim,
Fatma El Zahraa Ali Abd Elaal,
Sahar Zaki
Issue:
Volume 4, Issue 3, September 2019
Pages:
64-73
Received:
26 July 2019
Accepted:
24 August 2019
Published:
9 October 2019
Abstract: Aluminum is a ubiquitous toxic metal that mainly affects brain, bone, spleen, liver, kidney, hepatic hematopoietic system. This study investigated the effect of Curcumin and Curcumin Nanoparticles on reduced the toxicity of aluminum chloride in treated rats. Six groups of rats were used: (1) control; (2) curcumin-treated rats (15 mg curcumin /Kg BW; (3) Nano-curcumin -treated rats (15 mg Nano-curcumin /Kg BW); (4) aluminum chloride-treated rats (100 mg/kg BW); (5) AlCl3- curcumin-treated rats (100 mg AlCl3 and 15 mg curcumin/kg BW); (6) AlCl3- Nano-curcumin -treated rats (100 mg AlCl3 and 15 mg Nano-curcumin /kg BW). The treatment with AlCl3 alone caused significant (P≤ 0.05) increased in liver and kidney functions of rats, while the oral intake of curcumin and Nano-curcumin eliminate the harmful effect of AlCl3. On the same side, the treatment with AlCl3 alone significantly (P≤ 0.05) increase the free radical level and decreased the activities of antioxidant enzymes in plasma, while the treatment with curcumin and Nano-curcumin reduced this increased in free radicals and increased the activities of antioxidant enzymes. These results confirmed that the curcumin and Nano-curcumin reduced the toxicity effect of AlCl3 in rats; moreover, Nano-curcumin has a best biological and antioxidant activity than curcumin in healthy and AlCl3-treated rats.
Abstract: Aluminum is a ubiquitous toxic metal that mainly affects brain, bone, spleen, liver, kidney, hepatic hematopoietic system. This study investigated the effect of Curcumin and Curcumin Nanoparticles on reduced the toxicity of aluminum chloride in treated rats. Six groups of rats were used: (1) control; (2) curcumin-treated rats (15 mg curcumin /Kg BW...
Show More
Evaluation of Chemical, Functional and Sensory Properties of Flour Blends from Sorghum, African Yam Bean and Soybean for Use as Complementary Feeding
Bello Florence Abolaji,
Edeke Joy Edeke,
Sodipo Mopelola Ajoke
Issue:
Volume 4, Issue 3, September 2019
Pages:
74-81
Received:
5 September 2019
Accepted:
27 September 2019
Published:
11 October 2019
Abstract: The use of sorghum, African yam bean and soybean flour blends in the formulation of low cost, nutritive complementary diet was studied. The blends of sorghum, African yam bean and soybean flour considered were coded as SASA, SASB, SASC and SASD for 90:5:5, 80:10:10, 70:15:15, 60:20:20, respectively. The blends were compared with a commercial weaning diet (cerelac) coded as CTR and 100% sorghum flour (SG). The formulated diets were analysed for their proximate, mineral, anti-nutritional, functional and sensory properties using standard methods. The results showed that there were increases in the proximate and mineral compositions, with a decrease in anti-nutrient content as the substitution level increased. Sensory evaluation of the sample showed that the SASA after reconstitution with hot water was well accepted by the panelists, though the panelists preferred SG and CTR, this could be explained that the panelists are more familiar with them compared to the new formulations. As indicated by the results, food-to-food supplementation would be a suitable form of home fortification for regions where protein energy malnutrition is prevalent.
Abstract: The use of sorghum, African yam bean and soybean flour blends in the formulation of low cost, nutritive complementary diet was studied. The blends of sorghum, African yam bean and soybean flour considered were coded as SASA, SASB, SASC and SASD for 90:5:5, 80:10:10, 70:15:15, 60:20:20, respectively. The blends were compared with a commercial weanin...
Show More