-
The Performance of Four Stroke Surface Ignition Ceramic Heater C.I. Engine using Ethanol-Diesel Blend
Muthuraman S.,
Rama Udaya Marthandan R.
Issue:
Volume 3, Issue 2, April 2014
Pages:
38-45
Received:
16 February 2014
Published:
10 March 2014
Abstract: In this paper an experimental investigation on the performance of four stroke C.I.engine fueled with pure diesel (B0D100E0) and ethanol-diesel blends containing 10%, 20%, 25% and 30% by volume of ethanol (E) are evaluated. Formaldehyde (B) additive is used to solubility of ethanol indiesel that acts as a bridging agent and bonding to produce a homogeneous blend.The tests are carried out on a ceramic heater10KW single cylinder diesel engine under steady state operating conditions on two specified speeds of 1500 rpm and 2000.rpm. The Partially Stabilized Zirconia (PSZ) ceramic heater is used to reduce the emissions from the engine and improve engine output behavior. The relevant parameters such as brake thermal efficiency (BTE), break specific fuel consumption (BSFC) and emissions are calculated for ethanol-diesel blends by B5D85E10, B5D75E20, B5D70E25and B5D65E30. The PSZ ceramic heater is used to reduce the emissions by 38% of NOx, under half load condition for the blends of B5D85E10 gives minimum CO emissions and unburned HC emissions by 7.5ppm from the engine and improve engine output behavior to 1.8%.
Abstract: In this paper an experimental investigation on the performance of four stroke C.I.engine fueled with pure diesel (B0D100E0) and ethanol-diesel blends containing 10%, 20%, 25% and 30% by volume of ethanol (E) are evaluated. Formaldehyde (B) additive is used to solubility of ethanol indiesel that acts as a bridging agent and bonding to produce a homo...
Show More
-
Synergistic Evolutionary Model for Dynamic Evaluation of Energy Saving and Emission Reduction in Thermal Power Enterprise
Zhang Lei,
Li Na-na,
Zhao Hui-ru,
Yang Kun
Issue:
Volume 3, Issue 2, April 2014
Pages:
46-51
Received:
16 February 2014
Published:
10 March 2014
Abstract: Through analyzing the complexity of energy saving and emission reduction system in thermal power enterprise, we can find that this system affected by various elements within the system, policies and technologies in the external environment. Therefore, in order to evaluate the performance of energy saving and emission reduction in thermal power plants, both the complex nonlinear relationships among internal elements and the environmental impact should be considered. The state variables of system were determined based on collaborative learning theory, meanwhile a synergistic evolutionary model for dynamic evaluation of energy saving and emission reduction in thermal power enterprise was proposed. Based on the actual data of a thermal plant, the empirical results showed that the grid electricity and soot emissions of per kwh are the order parameters in this system, which plays a key role on the evolution of the energy saving and emission reduction system. Furthermore, the order parameters are the foundation of the performance evaluation.
Abstract: Through analyzing the complexity of energy saving and emission reduction system in thermal power enterprise, we can find that this system affected by various elements within the system, policies and technologies in the external environment. Therefore, in order to evaluate the performance of energy saving and emission reduction in thermal power plan...
Show More
-
Speed Estimation of Three Phase Induction Motor Using Artificial Neural Network
Moinak Pyne,
Abhishek Chatterjee,
Sibamay Dasgupta
Issue:
Volume 3, Issue 2, April 2014
Pages:
52-56
Received:
26 January 2014
Published:
20 March 2014
Abstract: Three phase induction motors being the most widely used motor for domestic, commercial and industrial applications, demands a more detailed understanding and improved analysis of its performance characteristics. The conventional method of using the equivalent circuit for assessing the motor performance cannot incorporate the non-linearities involved in the speed torque characteristics into the performance of the motor to the fullest extent. This paper presents an ANN based modeling of three phase induction motor to overcome this problem. The model has been tested and validated with actual experimental data. The performance of the model has been compared with that of a classical equivalent circuit technique both graphically and statistically and found to be superior. The model can thus offer a better method of speed estimation and control of the induction motor for input voltage variation with and without input frequency change.
Abstract: Three phase induction motors being the most widely used motor for domestic, commercial and industrial applications, demands a more detailed understanding and improved analysis of its performance characteristics. The conventional method of using the equivalent circuit for assessing the motor performance cannot incorporate the non-linearities involve...
Show More
-
Digital Simulation and Analysis of Six Modes of Operation of BLDC Motor Drives Using Hysteresis Band PWM Switching Scheme
Mohd Tariq,
Nidhi Varshney
Issue:
Volume 3, Issue 2, April 2014
Pages:
57-64
Received:
5 February 2014
Published:
30 March 2014
Abstract: Permanent magnet Brushless DC (BLDC) motors are gaining popularity mainly because of their better characteristics and performance in comparison to other electrical motors. BLDC motors are generally controlled using a three phase power semiconductor bridge. For starting and providing proper commutation sequence to turn on the power devices in the inverter bridge, the rotor position sensors are required. Based on the rotor position, the power devices are commutated sequentially every 60 degrees. This paper presents MATLAB/SIMULINK based simulation of BLDC motor drives. BLDC motor drive operates in six modes for one complete revolution of the rotor. The complete analysis of six modes of operation with position of rotor has been presented in this paper. The switching of the IGBT switches and corresponding phase currents and line voltages are shown here for each sequence. The presented BLDC motor drive is based on hysteresis band PWM current controller for generating modulated switching signals.
Abstract: Permanent magnet Brushless DC (BLDC) motors are gaining popularity mainly because of their better characteristics and performance in comparison to other electrical motors. BLDC motors are generally controlled using a three phase power semiconductor bridge. For starting and providing proper commutation sequence to turn on the power devices in the in...
Show More
-
Steady and Unsteady Flow inside a Centrifugal Pump for Two Different Impellers
Tarek A. Meakhail,
Mohamed Salem,
Ibrahim Shafie
Issue:
Volume 3, Issue 2, April 2014
Pages:
65-76
Received:
21 February 2014
Published:
30 March 2014
Abstract: Various parameters affect the pump performance. The impeller outlet diameter, the blade angle, the blade number and casing are the most critical. In this study, experimental and numerical investigations are carried out for two impellers different in diameter with the same casing. Numerical simulation of the whole machine (impeller, vaneless diffuser and volute) is performed using CFX-Tascflow commercial code. A frozen rotor simulation model is used for the steady state calculations and the rotor/stator model is used for the unsteady one. The model pump has a design rotation speed 2800 rpm and two impellers with 7 blades (70 mm and 105 mm outer diameters). For each pump, the performance measurements are measured and CFD analyses are carried out for different flow rates for steady and unsteady calculations. Finally, a comparison between the CFD and performance measurement is fairly good.
Abstract: Various parameters affect the pump performance. The impeller outlet diameter, the blade angle, the blade number and casing are the most critical. In this study, experimental and numerical investigations are carried out for two impellers different in diameter with the same casing. Numerical simulation of the whole machine (impeller, vaneless diffuse...
Show More
-
Grand Salmon Run Algorithm for Solving Optimal Reactive Power Dispatch Problem
K. Lenin,
B. Ravindranath Reddy,
M. Surya Kalavathi
Issue:
Volume 3, Issue 2, April 2014
Pages:
77-82
Received:
4 April 2014
Accepted:
14 April 2014
Published:
30 April 2014
Abstract: The chief aspect of solving Optimal Reactive Power Dispatch Problem (ORPD) is to minimize the real power loss and also to keep the voltage profile within the limits. In this paper, a new metaheuristic optimizing algorithm that is the simulation of “Grand Salmon Run” (GSR) is developed. The salmon run phenomena is one of the grand annual natural actions occurrence in the North America, where millions of salmons travel through mountain streams for spawn. The proposed GSR has been validated, by applying it on standard IEEE 30 bus test system. The results have been compared to other heuristics methods and the simulation results reveals about the good performance of the proposed algorithm
Abstract: The chief aspect of solving Optimal Reactive Power Dispatch Problem (ORPD) is to minimize the real power loss and also to keep the voltage profile within the limits. In this paper, a new metaheuristic optimizing algorithm that is the simulation of “Grand Salmon Run” (GSR) is developed. The salmon run phenomena is one of the grand annual natural act...
Show More
-
Automatic Power Factor Correction Based on Alienation Technique
Issue:
Volume 3, Issue 2, April 2014
Pages:
83-92
Received:
20 April 2014
Accepted:
4 May 2014
Published:
20 May 2014
Abstract: In modern digital protection and control systems, an alienation technique has recently become the workhorse of quantitative research and analysis. In this paper, an alienation technique is developed for calculations of original power factor on-line, active and compensation reactive powers and determination of the required number of capacitor banks to get the desired power factor. Alienation coefficients are calculated between phase voltage and current signals of power supply. These calculations are performed within one-cycle. Thus, the algorithm is well suited for implementation in a digital reactive power control scheme. This scheme is able accurately to identify the required capacitor rating to get the desired power factor under different loading levels. It does not need any extra equipment as it depends only on the voltage and line-current measurements which are mostly available at the relay location. Alternative transient program (ATP) and MATLAB programs are used to implement the proposed technique.
Abstract: In modern digital protection and control systems, an alienation technique has recently become the workhorse of quantitative research and analysis. In this paper, an alienation technique is developed for calculations of original power factor on-line, active and compensation reactive powers and determination of the required number of capacitor banks ...
Show More
-
Protection Scheme for Transmission Lines Based on Correlation Coefficients
Issue:
Volume 3, Issue 2, April 2014
Pages:
93-102
Received:
20 April 2014
Accepted:
4 May 2014
Published:
20 May 2014
Abstract: In modern digital power system protection systems, statistical coefficients technique is recently used for fault analysis. A correlation technique is developed for faults detection and discrimination. The proposed technique is able to accurately identify the condition of phase(s) involved in all ten types of shunt faults that may occur in extra high-voltage transmission lines under different fault resistances, inception angle and loading levels. The proposed technique does not need any extra equipment as it depends only on the three line-currents measurements which are mostly available at the relay location. This technique is able to perform the fault detection, type and phase selection in about a half-cycle period. Thus, the proposed technique is well suited for implementation in digital protection schemes. The suggested scheme is applied for a part of 500 Kv Egyptian network. Alternative transient program (ATP) and MATLAB programs are used to implement the proposed technique.
Abstract: In modern digital power system protection systems, statistical coefficients technique is recently used for fault analysis. A correlation technique is developed for faults detection and discrimination. The proposed technique is able to accurately identify the condition of phase(s) involved in all ten types of shunt faults that may occur in extra hig...
Show More